BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28528785)

  • 1. Resonance Tube Phonation in Water-the Effect of Tube Diameter and Water Depth on Back Pressure and Bubble Characteristics at Different Airflows.
    Wistbacka G; Andrade PA; Simberg S; Hammarberg B; Södersten M; Švec JG; Granqvist S
    J Voice; 2018 Jan; 32(1):126.e11-126.e22. PubMed ID: 28528785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study.
    Granqvist S; Simberg S; Hertegård S; Holmqvist S; Larsson H; Lindestad PÅ; Södersten M; Hammarberg B
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):113-21. PubMed ID: 24865620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Flow and Pressure Relationships in Different Tubes Commonly Used for Semi-occluded Vocal Tract Exercises.
    Amarante Andrade P; Wistbacka G; Larsson H; Södersten M; Hammarberg B; Simberg S; Švec JG; Granqvist S
    J Voice; 2016 Jan; 30(1):36-41. PubMed ID: 25873546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Do Tube Diameter and Vocal Tract Configuration Affect Oral Pressure Oscillation Characteristics Caused by Bubbling During Water Resistance Therapy?
    Guzman M; Castro C; Acevedo K; Moran C; Espinoza V; Quezada C
    J Voice; 2021 Nov; 35(6):935.e1-935.e11. PubMed ID: 32362578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Flow-resistant Tubes Used for Semi-occluded Vocal Tract Voice Training and Therapy.
    Smith SL; Titze IR
    J Voice; 2017 Jan; 31(1):113.e1-113.e8. PubMed ID: 27133001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of the Vocal Tract's Acousto-Mechanical Resonance on the Mechanism of Bubble Release From Tubes Used in SOVTE.
    da Silva AR; Kawamura IAM; Ghirardi ACAM
    J Voice; 2023 Nov; ():. PubMed ID: 37953087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and Computational Modeling of the Effects of Voice Therapy Using Tubes.
    Horáček J; Radolf V; Laukkanen AM
    J Speech Lang Hear Res; 2019 Jul; 62(7):2227-2244. PubMed ID: 31251676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of water resistance therapy on vocal fold vibration: a high-speed digital imaging study.
    Guzman M; Laukkanen AM; Traser L; Geneid A; Richter B; Muñoz D; Echternach M
    Logoped Phoniatr Vocol; 2017 Oct; 42(3):99-107. PubMed ID: 27484690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact Stress in Water Resistance Voice Therapy: A Physical Modeling Study.
    Horáček J; Radolf V; Laukkanen AM
    J Voice; 2019 Jul; 33(4):490-496. PubMed ID: 29884510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical laryngeal position and oral pressure variations during resonance tube phonation in water and in air. A pilot study.
    Wistbacka G; Sundberg J; Simberg S
    Logoped Phoniatr Vocol; 2016 Oct; 41(3):117-23. PubMed ID: 26033381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Exact Analytical Model for the Relationship Between Flow Resistance and Geometric Properties of Tubes Used in Semi-occluded Vocal Tract Exercises.
    da Silva AR; Ghirardi AC; Reiser MR; Paul S
    J Voice; 2019 Sep; 33(5):585-590. PubMed ID: 29861290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air Pressure and Contact Quotient Measures During Different Semioccluded Postures in Subjects With Different Voice Conditions.
    Guzmán M; Castro C; Madrid S; Olavarria C; Leiva M; Muñoz D; Jaramillo E; Laukkanen AM
    J Voice; 2016 Nov; 30(6):759.e1-759.e10. PubMed ID: 26526005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects on vocal fold collision and phonation threshold pressure of resonance tube phonation with tube end in water.
    Enflo L; Sundberg J; Romedahl C; McAllister A
    J Speech Lang Hear Res; 2013 Oct; 56(5):1530-8. PubMed ID: 23838993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Tube or Lax Vox?
    Tyrmi J; Radolf V; Horáček J; Laukkanen AM
    J Voice; 2017 Jul; 31(4):430-437. PubMed ID: 28062093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Visual Feedback of Airflow in Voice Training: Aerodynamic Properties of Two Flow Ball Devices.
    Lã FMB; Wistbacka G; Andrade PA; Granqvist S
    J Voice; 2017 May; 31(3):390.e1-390.e8. PubMed ID: 27816358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrinsic Laryngeal Muscle Activity With Different Diameters and Water Depths in a Semi-Occluded Vocal Tract Exercise.
    Cha J; Kim C; Choi SH
    J Speech Lang Hear Res; 2024 May; 67(5):1324-1338. PubMed ID: 38592964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of resonance tubes on glottal contact quotient with and without task instruction: a comparison of trained and untrained voices.
    Gaskill CS; Quinney DM
    J Voice; 2012 May; 26(3):e79-93. PubMed ID: 21550779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Stressful Is "Deep Bubbling"?
    Tyrmi J; Laukkanen AM
    J Voice; 2017 Mar; 31(2):262.e1-262.e6. PubMed ID: 27292094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The resonance tube method in voice therapy: description and practical implementations.
    Simberg S; Laine A
    Logoped Phoniatr Vocol; 2007; 32(4):165-70. PubMed ID: 17852715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of Water Resistance Therapy in Subjects Diagnosed With Behavioral Dysphonia: A Randomized Controlled Trial.
    Guzman M; Jara R; Olavarria C; Caceres P; Escuti G; Medina F; Medina L; Madrid S; Muñoz D; Laukkanen AM
    J Voice; 2017 May; 31(3):385.e1-385.e10. PubMed ID: 27769697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.