BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28528791)

  • 21. Deriving tissue density and elastic modulus from microCT bone scans.
    Wagner DW; Lindsey DP; Beaupre GS
    Bone; 2011 Nov; 49(5):931-8. PubMed ID: 21820094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensively characterizing heterogeneous and transversely isotropic properties of femur cortical bones.
    Zhang G; Jia X; Li Z; Wang Q; Gu H; Liu Y; Bai Z; Mao H
    J Mech Behav Biomed Mater; 2024 Mar; 151():106387. PubMed ID: 38246092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of storage time in saline solution on the material properties of cortical bone tissue.
    Zhang G; Deng X; Guan F; Bai Z; Cao L; Mao H
    Clin Biomech (Bristol, Avon); 2018 Aug; 57():56-66. PubMed ID: 29933215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of bone demineralization due to the use of exoprosthesis by comparing Young's modulus of the femur in unilateral transfemoral amputees.
    Ramírez JF; Isaza JA; Mariaka I; Vélez JA
    Prosthet Orthot Int; 2011 Dec; 35(4):459-66. PubMed ID: 22005351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time course of bone screw fixation following a local delivery of Zoledronate in a rat femoral model - a micro-finite element analysis.
    Kettenberger U; Latypova A; Terrier A; Pioletti DP
    J Mech Behav Biomed Mater; 2015 May; 45():22-31. PubMed ID: 25679481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microscale's relationship between Young's modulus and tissue density. Prediction of displacements.
    Cyganik Ł; Binkowski M; Kokot G; Cyganik P; Rusin T; Bolechała F; Nowak R; Wróbel Z; John A
    Comput Methods Biomech Biomed Engin; 2017 Dec; 20(16):1658-1668. PubMed ID: 29169266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The importance of intrinsic damage properties to bone fragility: a finite element study.
    Hardisty MR; Zauel R; Stover SM; Fyhrie DP
    J Biomech Eng; 2013 Jan; 135(1):011004. PubMed ID: 23363215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inverse finite element modeling for characterization of local elastic properties in image-guided failure assessment of human trabecular bone.
    Zwahlen A; Christen D; Ruffoni D; Schneider P; Schmolz W; Muller R
    J Biomech Eng; 2015 Jan; 137(1):. PubMed ID: 25367315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density.
    Aiyangar AK; Vivanco J; Au AG; Anderson PA; Smith EL; Ploeg HL
    J Biomech Eng; 2014 Sep; 136(9):091003. PubMed ID: 24825322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new method to evaluate the elastic modulus of cortical bone by using a combined computed tomography and finite element approach.
    Huang HL; Tsai MT; Lin DJ; Chien CS; Hsu JT
    Comput Biol Med; 2010 Apr; 40(4):464-8. PubMed ID: 20304390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling cement augmentation: a comparative experimental and finite element study at the continuum level.
    Zhao Y; Jin ZM; Wilcox RK
    Proc Inst Mech Eng H; 2010; 224(7):903-11. PubMed ID: 20839657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-scale finite element analysis of human cancellous bone tissue micro computer tomography data: a convergence study.
    Chen Y; Pani M; Taddei F; Mazzà C; Li X; Viceconti M
    J Biomech Eng; 2014 Oct; 136(10):101013. PubMed ID: 25070476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is the 0.2%-Strain-Offset Approach Appropriate for Calculating the Yield Stress of Cortical Bone?
    Zhang G; Luo J; Zheng G; Bai Z; Cao L; Mao H
    Ann Biomed Eng; 2021 Jul; 49(7):1747-1760. PubMed ID: 33479788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nondestructive Assessment of Growing Rat Tibial Mechanical Properties Under Three-Point Bending: A Microcomputed Tomography Based Finite Element Study.
    Zimmermann Y; Mustafy T; Villemure I
    J Biomech Eng; 2020 Dec; 142(12):. PubMed ID: 32747943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining specimen-specific finite-element models and optimization in cortical-bone material characterization improves prediction accuracy in three-point bending tests.
    Zhang G; Xu S; Yang J; Guan F; Cao L; Mao H
    J Biomech; 2018 Jul; 76():103-111. PubMed ID: 29921522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.