BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 28528860)

  • 1. Purifying selection and concerted evolution of RNA-sensing toll-like receptors in migratory waders.
    Raven N; Lisovski S; Klaassen M; Lo N; Madsen T; Ho SYW; Ujvari B
    Infect Genet Evol; 2017 Sep; 53():135-145. PubMed ID: 28528860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection.
    Velová H; Gutowska-Ding MW; Burt DW; Vinkler M
    Mol Biol Evol; 2018 Sep; 35(9):2170-2184. PubMed ID: 29893911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving Phylogenetic Relationships within Passeriformes Based on Mitochondrial Genes and Inferring the Evolution of Their Mitogenomes in Terms of Duplications.
    Mackiewicz P; Urantówka AD; Kroczak A; Mackiewicz D
    Genome Biol Evol; 2019 Oct; 11(10):2824-2849. PubMed ID: 31580435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraordinarily rapid proliferation of cultured muscle satellite cells from migratory birds.
    Young KG; Regnault TRH; Guglielmo CG
    Biol Lett; 2021 Aug; 17(8):20210200. PubMed ID: 34403643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand robin.
    Grueber CE; Wallis GP; King TM; Jamieson IG
    PLoS One; 2012; 7(9):e45011. PubMed ID: 23024782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Genome of the Great Gerbil Reveals Species-Specific Duplication of an MHCII Gene.
    Nilsson P; Solbakken MH; Schmid BV; Orr RJS; Lv R; Cui Y; Song Y; Zhang Y; Baalsrud HT; Tørresen OK; Stenseth NC; Yang R; Jakobsen KS; Easterday WR; Jentoft S
    Genome Biol Evol; 2020 Feb; 12(2):3832-3849. PubMed ID: 31971556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular evolution of cancer associated genes in mammals.
    MacDonald N; Raven N; Diep W; Evans S; Pannipitiya S; Bramwell G; Vanbeek C; Thomas F; Russell T; Dujon AM; Telonis-Scott M; Ujvari B
    Sci Rep; 2024 May; 14(1):11650. PubMed ID: 38773187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2) Subfamilies in Birds.
    Almeida D; Maldonado E; Khan I; Silva L; Gilbert MT; Zhang G; Jarvis ED; O'Brien SJ; Johnson WE; Antunes A
    Genome Biol Evol; 2016 Apr; 8(4):1115-31. PubMed ID: 26979796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A supertree approach to shorebird phylogeny.
    Thomas GH; Wills MA; Székely T
    BMC Evol Biol; 2004 Aug; 4():28. PubMed ID: 15329156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analyses identify genomic features potentially involved in the evolution of birds-of-paradise.
    Prost S; Armstrong EE; Nylander J; Thomas GWC; Suh A; Petersen B; Dalen L; Benz BW; Blom MPK; Palkopoulou E; Ericson PGP; Irestedt M
    Gigascience; 2019 May; 8(5):. PubMed ID: 30689847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The published complete mitochondrial genome of Spotted Greenshank (
    Sangster G; Luksenburg JA
    Mitochondrial DNA B Resour; 2023; 8(11):1273-1275. PubMed ID: 38188446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosaic and concerted evolution in the visual system of birds.
    Gutiérrez-Ibáñez C; Iwaniuk AN; Moore BA; Fernández-Juricic E; Corfield JR; Krilow JM; Kolominsky J; Wylie DR
    PLoS One; 2014; 9(3):e90102. PubMed ID: 24621573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Existing methods are effective at measuring natural selection on gene expression.
    Fraser HB
    Nat Ecol Evol; 2022 Dec; 6(12):1836-1837. PubMed ID: 36344679
    [No Abstract]   [Full Text] [Related]  

  • 14. Flight risks.
    Cohen J
    Science; 2023 Sep; 381(6665):1402-1405. PubMed ID: 37769107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging an existing whole-genome resequencing population data set to characterize toll-like receptor gene diversity in a threatened bird.
    Magid M; Wold JR; Moraga R; Cubrinovska I; Houston DM; Gartrell BD; Steeves TE
    Mol Ecol Resour; 2022 Oct; 22(7):2810-2825. PubMed ID: 35635119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of RNA sensing receptors in birds.
    Magor KE
    Immunogenetics; 2022 Feb; 74(1):149-165. PubMed ID: 35059779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in selection constraints on teleost TLRs with emphasis on their repertoire in the Walking catfish, Clarias batrachus.
    Priyam M; Gupta SK; Sarkar B; Sharma TR; Pattanayak A
    Sci Rep; 2020 Dec; 10(1):21394. PubMed ID: 33288798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic diversity of toll-like receptor genes in the vulnerable Chinese egret (Egretta eulophotes).
    Xu W; Zhou X; Fang W; Chen X
    PLoS One; 2020; 15(5):e0233714. PubMed ID: 32469968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation of selective constraints shapes variation of toll-like receptors in a colonial waterbird, the black-headed gull.
    Podlaszczuk P; Indykiewicz P; Markowski J; Minias P
    Immunogenetics; 2020 May; 72(4):251-262. PubMed ID: 31996941
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.