These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 28528908)
1. The New Red Algal Subphylum Proteorhodophytina Comprises the Largest and Most Divergent Plastid Genomes Known. Muñoz-Gómez SA; Mejía-Franco FG; Durnin K; Colp M; Grisdale CJ; Archibald JM; Slamovits CH Curr Biol; 2017 Jun; 27(11):1677-1684.e4. PubMed ID: 28528908 [TBL] [Abstract][Full Text] [Related]
2. Independent Size Expansions and Intron Proliferation in Red Algal Plastid and Mitochondrial Genomes. van Beveren F; Eme L; López-García P; Ciobanu M; Moreira D Genome Biol Evol; 2022 Apr; 14(4):. PubMed ID: 35289373 [TBL] [Abstract][Full Text] [Related]
3. Divergence times and plastid phylogenomics within the intron-rich order Erythropeltales (Compsopogonophyceae, Rhodophyta). Preuss M; Verbruggen H; West JA; Zuccarello GC J Phycol; 2021 Jun; 57(3):1035-1044. PubMed ID: 33657649 [TBL] [Abstract][Full Text] [Related]
4. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. Janouškovec J; Liu SL; Martone PT; Carré W; Leblanc C; Collén J; Keeling PJ PLoS One; 2013; 8(3):e59001. PubMed ID: 23536846 [TBL] [Abstract][Full Text] [Related]
5. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. Le Corguillé G; Pearson G; Valente M; Viegas C; Gschloessl B; Corre E; Bailly X; Peters AF; Jubin C; Vacherie B; Cock JM; Leblanc C BMC Evol Biol; 2009 Oct; 9():253. PubMed ID: 19835607 [TBL] [Abstract][Full Text] [Related]
6. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. Wang L; Mao Y; Kong F; Li G; Ma F; Zhang B; Sun P; Bi G; Zhang F; Xue H; Cao M PLoS One; 2013; 8(5):e65902. PubMed ID: 23734264 [TBL] [Abstract][Full Text] [Related]
7. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Ševčíková T; Horák A; Klimeš V; Zbránková V; Demir-Hilton E; Sudek S; Jenkins J; Schmutz J; Přibyl P; Fousek J; Vlček Č; Lang BF; Oborník M; Worden AZ; Eliáš M Sci Rep; 2015 May; 5():10134. PubMed ID: 26017773 [TBL] [Abstract][Full Text] [Related]
8. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction. Qiu H; Lee JM; Yoon HS; Bhattacharya D J Phycol; 2017 Jun; 53(3):715-719. PubMed ID: 28095611 [TBL] [Abstract][Full Text] [Related]
9. The Organelle Genomes in the Photosynthetic Red Algal Parasite Pterocladiophila hemisphaerica (Florideophyceae, Rhodophyta) Have Elevated Substitution Rates and Extreme Gene Loss in the Plastid Genome. Preuss M; Verbruggen H; Zuccarello GC J Phycol; 2020 Aug; 56(4):1006-1018. PubMed ID: 32215918 [TBL] [Abstract][Full Text] [Related]
10. Plastid genome analysis of three Nemaliophycidae red algal species suggests environmental adaptation for iron limited habitats. Cho CH; Choi JW; Lam DW; Kim KM; Yoon HS PLoS One; 2018; 13(5):e0196995. PubMed ID: 29738547 [TBL] [Abstract][Full Text] [Related]
11. The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae). DePriest MS; Bhattacharya D; López-Bautista JM PLoS One; 2013; 8(7):e68246. PubMed ID: 23894297 [TBL] [Abstract][Full Text] [Related]
12. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Janouskovec J; Horák A; Oborník M; Lukes J; Keeling PJ Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10949-54. PubMed ID: 20534454 [TBL] [Abstract][Full Text] [Related]
13. Gene-rich plastid genomes of two parasitic red algal species, Laurencia australis and L. verruciformis (Rhodomelaceae, Ceramiales), and a taxonomic revision of Janczewskia. Preuss M; Díaz-Tapia P; Verbruggen H; Zuccarello GC J Phycol; 2023 Oct; 59(5):950-962. PubMed ID: 37638497 [TBL] [Abstract][Full Text] [Related]
14. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids. Smith DR; Keeling PJ J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077 [TBL] [Abstract][Full Text] [Related]
15. Evolution: King-Size Plastid Genomes in a New Red Algal Clade. Moreira D; López-García P Curr Biol; 2017 Jul; 27(13):R651-R653. PubMed ID: 28697364 [TBL] [Abstract][Full Text] [Related]
16. Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae. Tanifuji G; Onodera NT; Brown MW; Curtis BA; Roger AJ; Ka-Shu Wong G; Melkonian M; Archibald JM BMC Genomics; 2014 May; 15(1):374. PubMed ID: 24885563 [TBL] [Abstract][Full Text] [Related]
17. Group II intron and repeat-rich red algal mitochondrial genomes demonstrate the dynamic recent history of autocatalytic RNAs. Kim D; Lee J; Cho CH; Kim EJ; Bhattacharya D; Yoon HS BMC Biol; 2022 Jan; 20(1):2. PubMed ID: 34996446 [TBL] [Abstract][Full Text] [Related]
18. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Lee J; Kim KM; Yang EC; Miller KA; Boo SM; Bhattacharya D; Yoon HS Sci Rep; 2016 Mar; 6():23744. PubMed ID: 27030297 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary Dynamics of Cryptophyte Plastid Genomes. Kim JI; Moore CE; Archibald JM; Bhattacharya D; Yi G; Yoon HS; Shin W Genome Biol Evol; 2017 Jul; 9(7):1859-1872. PubMed ID: 28854597 [TBL] [Abstract][Full Text] [Related]
20. The first plastid genome of a filamentous taxon 'Bangia' sp. OUCPT-01 in the Bangiales. Cao M; Bi G; Mao Y; Li G; Kong F Sci Rep; 2018 Jul; 8(1):10688. PubMed ID: 30013114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]