BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 28528909)

  • 1. Melanopsin Contributions to the Representation of Images in the Early Visual System.
    Allen AE; Storchi R; Martial FP; Bedford RA; Lucas RJ
    Curr Biol; 2017 Jun; 27(11):1623-1632.e4. PubMed ID: 28528909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones.
    Procyk CA; Eleftheriou CG; Storchi R; Allen AE; Milosavljevic N; Brown TM; Lucas RJ
    J Neurophysiol; 2015 Aug; 114(2):1321-30. PubMed ID: 26084909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system.
    Brown TM; Gias C; Hatori M; Keding SR; Semo M; Coffey PJ; Gigg J; Piggins HD; Panda S; Lucas RJ
    PLoS Biol; 2010 Dec; 8(12):e1000558. PubMed ID: 21151887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual responses in the dorsal lateral geniculate nucleus at early stages of retinal degeneration in
    Procyk CA; Allen AE; Martial FP; Lucas RJ
    J Neurophysiol; 2019 Oct; 122(4):1753-1764. PubMed ID: 31461375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanopsin-driven light adaptation in mouse vision.
    Allen AE; Storchi R; Martial FP; Petersen RS; Montemurro MA; Brown TM; Lucas RJ
    Curr Biol; 2014 Nov; 24(21):2481-90. PubMed ID: 25308073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melanopsin-derived visual responses under light adapted conditions in the mouse dLGN.
    Davis KE; Eleftheriou CG; Allen AE; Procyk CA; Lucas RJ
    PLoS One; 2015; 10(3):e0123424. PubMed ID: 25822371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanopsin photoreception contributes to human visual detection, temporal and colour processing.
    Zele AJ; Feigl B; Adhikari P; Maynard ML; Cao D
    Sci Rep; 2018 Mar; 8(1):3842. PubMed ID: 29497109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance.
    Lall GS; Revell VL; Momiji H; Al Enezi J; Altimus CM; Güler AD; Aguilar C; Cameron MA; Allender S; Hankins MW; Lucas RJ
    Neuron; 2010 May; 66(3):417-28. PubMed ID: 20471354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice.
    Hattar S; Lucas RJ; Mrosovsky N; Thompson S; Douglas RH; Hankins MW; Lem J; Biel M; Hofmann F; Foster RG; Yau KW
    Nature; 2003 Jul; 424(6944):76-81. PubMed ID: 12808468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of Fast Narrowband Oscillations in the Mouse Retina and dLGN According to Background Light Intensity.
    Storchi R; Bedford RA; Martial FP; Allen AE; Wynne J; Montemurro MA; Petersen RS; Lucas RJ
    Neuron; 2017 Jan; 93(2):299-307. PubMed ID: 28103478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive contributions of melanopsin and both cone types provide broadband sensitivity to mouse pupil control.
    Hayter EA; Brown TM
    BMC Biol; 2018 Jul; 16(1):83. PubMed ID: 30064443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN.
    Dacey DM; Liao HW; Peterson BB; Robinson FR; Smith VC; Pokorny J; Yau KW; Gamlin PD
    Nature; 2005 Feb; 433(7027):749-54. PubMed ID: 15716953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision.
    Güler AD; Ecker JL; Lall GS; Haq S; Altimus CM; Liao HW; Barnard AR; Cahill H; Badea TC; Zhao H; Hankins MW; Berson DM; Lucas RJ; Yau KW; Hattar S
    Nature; 2008 May; 453(7191):102-5. PubMed ID: 18432195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Form vision from melanopsin in humans.
    Allen AE; Martial FP; Lucas RJ
    Nat Commun; 2019 May; 10(1):2274. PubMed ID: 31118424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision.
    Estevez ME; Fogerson PM; Ilardi MC; Borghuis BG; Chan E; Weng S; Auferkorte ON; Demb JB; Berson DM
    J Neurosci; 2012 Sep; 32(39):13608-20. PubMed ID: 23015450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Visual Cortex Responses to Rapid Cone and Melanopsin-Directed Flicker.
    Spitschan M; Datta R; Stern AM; Brainard DH; Aguirre GK
    J Neurosci; 2016 Feb; 36(5):1471-82. PubMed ID: 26843631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn.
    Storchi R; Milosavljevic N; Eleftheriou CG; Martial FP; Orlowska-Feuer P; Bedford RA; Brown TM; Montemurro MA; Petersen RS; Lucas RJ
    Proc Natl Acad Sci U S A; 2015 Oct; 112(42):E5734-43. PubMed ID: 26438865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanopsin driven enhancement of cone-mediated visual processing.
    Zele AJ; Adhikari P; Cao D; Feigl B
    Vision Res; 2019 Jul; 160():72-81. PubMed ID: 31078661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distinct contribution of short-wavelength-sensitive cones to light-evoked activity in the mouse pretectal olivary nucleus.
    Allen AE; Brown TM; Lucas RJ
    J Neurosci; 2011 Nov; 31(46):16833-43. PubMed ID: 22090509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.