BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28528947)

  • 1. Syntrophic association of termite gut bacterial symbionts with bifunctional characteristics of cellulose degrading and polyhydroxyalkanoate producing bacteria.
    Cibichakravarthy B; Abinaya S; Prabagaran SR
    Int J Biol Macromol; 2017 Oct; 103():613-620. PubMed ID: 28528947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening and identification of newly isolated cellulose-degrading bacteria from the gut of xylophagous termite Microcerotermes diversus (Silvestri).
    Pourramezan Z; Ghezelbash GR; Romani B; Ziaei S; Hedayatkhah A
    Mikrobiologiia; 2012; 81(6):796-802. PubMed ID: 23610931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Diversity and function of symbiotic microbes in the gut of lower termites].
    Yang H; Peng JX; Liu KY; Hong HZ
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):496-9. PubMed ID: 16933630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard.
    Mohammed S; Behera HT; Dekebo A; Ray L
    Int J Biol Macromol; 2020 Aug; 156():1064-1080. PubMed ID: 31751740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium.
    Nakajima H; Hongoh Y; Usami R; Kudo T; Ohkuma M
    FEMS Microbiol Ecol; 2005 Oct; 54(2):247-55. PubMed ID: 16332323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standardization of biopolymer production from seaweed associative bacteria.
    R R; R SD; A M; V RK
    Int J Biol Macromol; 2017 Sep; 102():550-564. PubMed ID: 28404223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis.
    Wenzel M; Schönig I; Berchtold M; Kämpfer P; König H
    J Appl Microbiol; 2002; 92(1):32-40. PubMed ID: 11849325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the core microbial community in the gut of fungus-growing termites.
    Otani S; Mikaelyan A; Nobre T; Hansen LH; Koné NA; Sørensen SJ; Aanen DK; Boomsma JJ; Brune A; Poulsen M
    Mol Ecol; 2014 Sep; 23(18):4631-44. PubMed ID: 25066007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and assessment of gut bacteria from the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae), for paratransgenesis research and application.
    Tikhe CV; Sethi A; Delatte J; Husseneder C
    Insect Sci; 2017 Feb; 24(1):93-102. PubMed ID: 26477889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.
    Fall S; Hamelin J; Ndiaye F; Assigbetse K; Aragno M; Chotte JL; Brauman A
    Appl Environ Microbiol; 2007 Aug; 73(16):5199-208. PubMed ID: 17574999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis and characterization of polyhydroxyalkanoate from marine Bacillus cereus MCCB 281 utilizing glycerol as carbon source.
    Mohandas SP; Balan L; Jayanath G; Anoop BS; Philip R; Cubelio SS; Bright Singh IS
    Int J Biol Macromol; 2018 Nov; 119():380-392. PubMed ID: 30026096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Termite symbiotic systems: efficient bio-recycling of lignocellulose.
    Ohkuma M
    Appl Microbiol Biotechnol; 2003 Mar; 61(1):1-9. PubMed ID: 12658509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites.
    Thong-On A; Suzuki K; Noda S; Inoue J; Kajiwara S; Ohkuma M
    Microbes Environ; 2012; 27(2):186-92. PubMed ID: 22791052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis.
    Tsegaye B; Balomajumder C; Roy P
    Int Microbiol; 2019 Mar; 22(1):29-39. PubMed ID: 30810928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cellulolytic system of the termite gut.
    König H; Li L; Fröhlich J
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):7943-62. PubMed ID: 23900801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibiotics production by an actinomycete isolated from the termite gut.
    Matsui T; Tanaka J; Namihira T; Shinzato N
    J Basic Microbiol; 2012 Dec; 52(6):731-5. PubMed ID: 22359219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome.
    Marynowska M; Goux X; Sillam-Dussès D; Rouland-Lefèvre C; Roisin Y; Delfosse P; Calusinska M
    BMC Genomics; 2017 Sep; 18(1):681. PubMed ID: 28863779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of phage battery to investigate the actinofloral layers of termite gut microflora.
    Kurtböke DI; French JR
    J Appl Microbiol; 2007 Sep; 103(3):722-34. PubMed ID: 17714406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the region-wise diversity and functions of symbiotic bacteria in the gut system of wood-feeding termite, Coptotermes formosanus, toward the degradation of cellulose, hemicellulose, and organic dyes.
    Dar MA; Xie R; Pandit RS; Danso B; Dong C; Sun J
    Insect Sci; 2022 Oct; 29(5):1414-1432. PubMed ID: 35134272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist.
    Ohkuma M; Noda S; Hattori S; Iida T; Yuki M; Starns D; Inoue J; Darby AC; Hongoh Y
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10224-30. PubMed ID: 25979941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.