BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 28528949)

  • 21. [Preparation and antibacterial capacity of artificial skin loaded with nanoparticles silver using bacterial cellulose].
    Sun D; Yang J; Li J; Zhou L; Yu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Oct; 26(5):1034-8. PubMed ID: 19947484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties.
    Sadanand V; Rajini N; Varada Rajulu A; Satyanarayana B
    Carbohydr Polym; 2016 Oct; 150():32-9. PubMed ID: 27312610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Ag-liposome nano composites.
    Barani H; Montazer M; Toliyat T; Samadi N
    J Liposome Res; 2010 Dec; 20(4):323-9. PubMed ID: 20131982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.
    Kaviya S; Santhanalakshmi J; Viswanathan B; Muthumary J; Srinivasan K
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):594-8. PubMed ID: 21536485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers.
    Celebioglu A; Topuz F; Yildiz ZI; Uyar T
    Carbohydr Polym; 2019 Mar; 207():471-479. PubMed ID: 30600030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films.
    Bryaskova R; Pencheva D; Kale GM; Lad U; Kantardjiev T
    J Colloid Interface Sci; 2010 Sep; 349(1):77-85. PubMed ID: 20557895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional cellulose based silver-functionalized ZnO nanocomposite with controlled geometry: Synthesis, characterization and properties.
    Fu F; Gu J; Zhang R; Xu X; Yu X; Liu L; Liu X; Zhou J; Yao J
    J Colloid Interface Sci; 2018 Nov; 530():433-443. PubMed ID: 29990779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Green synthesis of tea Ag nanocomposite hydrogels via mint leaf extraction for effective antibacterial activity.
    Jayaramudu T; Varaprasad K; Raghavendra GM; Sadiku ER; Mohana Raju K; Amalraj J
    J Biomater Sci Polym Ed; 2017 Oct; 28(14):1588-1602. PubMed ID: 28589745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications.
    Azizi S; Mohamad R; Abdul Rahim R; Mohammadinejad R; Bin Ariff A
    Int J Biol Macromol; 2017 Nov; 104(Pt A):423-431. PubMed ID: 28591593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical and antibacterial properties of recycled carton paper coated by PS/Ag nanocomposites for packaging.
    Nassar MA; Youssef AM
    Carbohydr Polym; 2012 Jun; 89(1):269-74. PubMed ID: 24750633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface modification of cotton fabrics for antibacterial application by coating with AgNPs-alginate composite.
    Zahran MK; Ahmed HB; El-Rafie MH
    Carbohydr Polym; 2014 Aug; 108():145-52. PubMed ID: 24751258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes.
    Xu X; Yang YQ; Xing YY; Yang JF; Wang SF
    Carbohydr Polym; 2013 Nov; 98(2):1573-7. PubMed ID: 24053842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel and green biomaterial based silver nanocomposite hydrogel: synthesis, characterization and antibacterial effect.
    Bardajee GR; Hooshyar Z; Rezanezhad H
    J Inorg Biochem; 2012 Dec; 117():367-73. PubMed ID: 22818024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites.
    Shao W; Liu H; Liu X; Sun H; Wang S; Zhang R
    Int J Biol Macromol; 2015 May; 76():209-17. PubMed ID: 25748842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reducing end thiol-modified nanocellulose: Bottom-up enzymatic synthesis and use for templated assembly of silver nanoparticles into biocidal composite material.
    Zhong C; Zajki-Zechmeister K; Nidetzky B
    Carbohydr Polym; 2021 May; 260():117772. PubMed ID: 33712130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step synthesis and characterization of polyaniline nanofiber/silver nanoparticle composite networks as antibacterial agents.
    Poyraz S; Cerkez I; Huang TS; Liu Z; Kang L; Luo J; Zhang X
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20025-34. PubMed ID: 25365660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of cellulosic Ag-nanocomposites using an ionic liquid.
    Tayyab Z; Safi SZ; Rahim A; Khan AS; Sharif F; Khan ZUH; Rehman F; Ullah Z; Iqbal J; Muhammad N
    J Biomater Sci Polym Ed; 2019; 30(9):785-796. PubMed ID: 31018777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectral, morphological and antibacterial studies of β-cyclodextrin stabilized silver - Chitosan nanocomposites.
    Punitha N; Ramesh PS; Geetha D
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1710-7. PubMed ID: 25467661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of magnetite/Alyssum homolocarpum seed gum/Ag nanocomposite and determination of its antibacterial activity.
    Jalili MA; Allafchian A; Karimzadeh F; Nasiri F
    Int J Biol Macromol; 2019 Oct; 139():1263-1271. PubMed ID: 31421169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silver nanoparticles fabricated by reducing property of cellulose derivatives.
    Suwan T; Khongkhunthian S; Okonogi S
    Drug Discov Ther; 2019; 13(2):70-79. PubMed ID: 31080206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.