BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 28528973)

  • 1. Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent).
    Aqueveque P; Céspedes CL; Becerra J; Aranda M; Sterner O
    Food Chem Toxicol; 2017 Nov; 109(Pt 2):1048-1054. PubMed ID: 28528973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea.
    Zhang Y; Wang C; Su P; Liao X
    PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action mechanism for 3β-hydroxykaurenoic acid and 4,4-dimethylanthracene-1,9,10(4H)-trione on Botrytis cinerea.
    Mendoza L; Ribera A; Saavedra A; Silva E; Araya-Maturana R; Cotoras M
    Mycologia; 2015; 107(4):661-6. PubMed ID: 25977212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea.
    Soylu EM; Kurt S; Soylu S
    Int J Food Microbiol; 2010 Oct; 143(3):183-9. PubMed ID: 20826038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of linear Geranylphenols and their effect on mycelial growth of plant pathogen Botrytis cinerea.
    Espinoza L; Taborga L; Díaz K; Olea AF; Peña-Cortés H
    Molecules; 2014 Jan; 19(2):1512-26. PubMed ID: 24473210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal effectiveness of fungicide and peroxyacetic acid mixture on the growth of Botrytis cinerea.
    Ayoub F; Ben Oujji N; Chebli B; Ayoub M; Hafidi A; Salghi R; Jodeh S
    Microb Pathog; 2017 Apr; 105():74-80. PubMed ID: 28192222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridine-grafted chitosan derivative as an antifungal agent.
    Jia R; Duan Y; Fang Q; Wang X; Huang J
    Food Chem; 2016 Apr; 196():381-7. PubMed ID: 26593505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungicidal Effect of Pyraclostrobin against
    Xiong H; Liu X; Xu J; Zhang X; Luan S; Huang Q
    J Agric Food Chem; 2020 Sep; 68(39):10975-10983. PubMed ID: 32857513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry.
    Moussa SH; Tayel AA; Alsohim AS; Abdallah RR
    J Food Sci; 2013 Oct; 78(10):M1589-M1594. PubMed ID: 24025030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: Evaluation of possible mechanism of action.
    Robles-Kelly C; Rubio J; Thomas M; Sedán C; Martinez R; Olea AF; Carrasco H; Taborga L; Silva-Moreno E
    Pestic Biochem Physiol; 2017 Sep; 141():50-56. PubMed ID: 28911740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioassay-guided isolation, identification and activity evaluation of antifungal compounds from
    Safa R; Walid Y; Affes TG; Hammami M; Sellami IH
    Int J Environ Health Res; 2024 Jun; 34(6):2593-2604. PubMed ID: 37767807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal activity and biotransformation of diisophorone by Botrytis cinerea.
    Daoubi M; Deligeorgopoulou A; Macías-Sánchez AJ; Hernández-Galán R; Hitchcock PB; Hanson JR; Collado IG
    J Agric Food Chem; 2005 Jul; 53(15):6035-9. PubMed ID: 16028992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and in Vitro Antifungal Activity against Botrytis cinerea of Geranylated Phenols and Their Phenyl Acetate Derivatives.
    Chávez MI; Soto M; Taborga L; Díaz K; Olea AF; Bay C; Peña-Cortés H; Espinoza L
    Int J Mol Sci; 2015 Aug; 16(8):19130-52. PubMed ID: 26287171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diterpenoids from Streptomyces sp. SN194 and Their Antifungal Activity against Botrytis cinerea.
    Bi Y; Yu Z
    J Agric Food Chem; 2016 Nov; 64(45):8525-8529. PubMed ID: 27794606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
    Veloukas T; Karaoglanidis GS
    Pest Manag Sci; 2012 Jun; 68(6):858-64. PubMed ID: 22262495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea.
    Olmedo GM; Cerioni L; González MM; Cabrerizo FM; Rapisarda VA; Volentini SI
    Food Microbiol; 2017 Apr; 62():9-14. PubMed ID: 27889171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the fungitoxic activity on Botrytis cinerea of the aristolochic acids I and II.
    Melo R; Sanhueza L; Mendoza L; Cotoras M
    Lett Appl Microbiol; 2019 Jan; 68(1):48-55. PubMed ID: 30325521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of Botrytis cinerea and interacts with DNA molecules.
    Liu M; Wang G; Xiao L; Xu X; Liu X; Xu P; Lin X
    Mar Drugs; 2014 Jun; 12(7):3838-51. PubMed ID: 24979270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.