BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 28528973)

  • 21. The Inactivation by Curcumin-Mediated Photosensitization of
    Huang L; Yong KWL; Fernando WC; Carpinelli de Jesus M; De Voss JJ; Sultanbawa Y; Fletcher MT
    Toxins (Basel); 2021 Mar; 13(3):. PubMed ID: 33803254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-Synthesis of Chloroxaloterpin A and B and Their Antifungal Activity against
    Zhang L; Wang X; Bi Y; Yu Z
    J Agric Food Chem; 2022 Jun; 70(23):7070-7076. PubMed ID: 35652483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea.
    Schnee S; Queiroz EF; Voinesco F; Marcourt L; Dubuis PH; Wolfender JL; Gindro K
    J Agric Food Chem; 2013 Jun; 61(23):5459-67. PubMed ID: 23730921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.
    He L; Liu Y; Mustapha A; Lin M
    Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits.
    Ruiz-Moyano S; Hernández A; Galvan AI; Córdoba MG; Casquete R; Serradilla MJ; Martín A
    Food Microbiol; 2020 Dec; 92():103556. PubMed ID: 32950150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of 2-amino-6-oxocyclohexenylsulfonamides and their activity against Botrytis cinerea.
    Li XH; Ji MS; Qi ZQ; Li XW; Shen YX; Gu ZM; Zhang Y; Wei SH; Wang YZ; Wang DQ
    Pest Manag Sci; 2011 Aug; 67(8):986-92. PubMed ID: 21438123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea.
    Shao X; Cheng S; Wang H; Yu D; Mungai C
    J Appl Microbiol; 2013 Jun; 114(6):1642-9. PubMed ID: 23495848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Essential oils to control Botrytis cinerea in vitro and in vivo on plum fruits.
    Aminifard MH; Mohammadi S
    J Sci Food Agric; 2013 Jan; 93(2):348-53. PubMed ID: 22740387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design, Synthesis, and SAR of Novel 2-Glycinamide Cyclohexyl Sulfonamide Derivatives against Botrytis cinerea.
    Cai N; Liu C; Feng Z; Li X; Qi Z; Ji M; Qin P; Ahmed W; Cui Z
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29570637
    [No Abstract]   [Full Text] [Related]  

  • 30. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.
    Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC
    Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel fungitoxicity assays for inhibition of germination-associated adhesion of Botrytis cinerea and Puccinia recondita spores.
    Slawecki RA; Ryan EP; Young DH
    Appl Environ Microbiol; 2002 Feb; 68(2):597-601. PubMed ID: 11823196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The antifungal activity of widdrol and its biotransformation by Colletotrichum gloeosporioides (penz.) Penz. & Sacc. and Botrytis cinerea Pers.: Fr.
    Nuñez YO; Salabarria IS; Collado IG; Hernandez-Galan R
    J Agric Food Chem; 2006 Oct; 54(20):7517-21. PubMed ID: 17002416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitory effect of lactoferrin against gray mould on tomato plants caused by Botrytis cinerea and possible mechanisms of action.
    Wang J; Xia XM; Wang HY; Li PP; Wang KY
    Int J Food Microbiol; 2013 Feb; 161(3):151-7. PubMed ID: 23333340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, fungicidal activity, and structure-activity relationship of 2-oxo- and 2-hydroxycycloalkylsulfonamides.
    Li XH; Wu DC; Qi ZQ; Li XW; Gu ZM; Wei SH; Zhang Y; Wang YZ; Ji MS
    J Agric Food Chem; 2010 Nov; 58(21):11384-9. PubMed ID: 20929233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro sensitivity of Botrytis cinerea to anthraquinone and anthrahydroquinone derivatives.
    Mendoza L; Araya-Maturana R; Cardona W; Delgado-Castro T; García C; Lagos C; Cotoras M
    J Agric Food Chem; 2005 Dec; 53(26):10080-4. PubMed ID: 16366698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibitory activity of tea polyphenol and Hanseniaspora uvarum against Botrytis cinerea infections.
    Liu HM; Guo JH; Cheng YJ; Liu P; Long CA; Deng BX
    Lett Appl Microbiol; 2010 Sep; 51(3):258-63. PubMed ID: 20633212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.
    Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q
    Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea.
    Chen H; Xiao X; Wang J; Wu L; Zheng Z; Yu Z
    Biotechnol Lett; 2008 May; 30(5):919-23. PubMed ID: 18165869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of postharvest grey mould decay of nectarine by tea polyphenol combined with tea saponin.
    Yang XP; Jiang XD; Chen JJ; Zhang SS
    Lett Appl Microbiol; 2013 Dec; 57(6):502-9. PubMed ID: 23909749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry.
    Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA
    Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.