BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 28529)

  • 1. The influence of the brain hormone on retention of blood in the mid-gut of the mosquito Aedes aegypti (L). II. Early elimination following removal of the medial neurosecretory cells of the brain.
    Cole SJ; Gillett JD
    Proc R Soc Lond B Biol Sci; 1978 Jun; 202(1147):307-11. PubMed ID: 28529
    [No Abstract]   [Full Text] [Related]  

  • 2. The influence of the brain hormone on retention of blood in the mid-gut of the mosquito Aedes aegypti (L.).
    Gillett JD; Cole SJ; Reeves D
    Proc R Soc Lond B Biol Sci; 1975 Aug; 190(1100):359-67. PubMed ID: 240165
    [No Abstract]   [Full Text] [Related]  

  • 3. The influence of the brain hormone on retention of blood in the mid-gut of the mosquito Aedes aegypti (L.). III. The involvement of the ovaries and ecdysone.
    Cole SJ; Gillett JD
    Proc R Soc Lond B Biol Sci; 1979 Aug; 205(1160):411-22. PubMed ID: 41256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti.
    Brown MR; Clark KD; Gulia M; Zhao Z; Garczynski SF; Crim JW; Suderman RJ; Strand MR
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5716-21. PubMed ID: 18391205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroendocrine modulation of olfactory sensory neuron signal reception via axo-dendritic synapses in the antennae of the mosquito, Aedes aegypti.
    Meola SM; Sittertz-Bhatkar H
    J Mol Neurosci; 2002 Jun; 18(3):239-45. PubMed ID: 12059042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ovarian ecdysone secretion is controlled by a brain hormone in an adult mosquito.
    Hagedorn HH; Shapiro JP; Hanaoka K
    Nature; 1979 Nov; 282(5734):92-4. PubMed ID: 503195
    [No Abstract]   [Full Text] [Related]  

  • 7. The control of reproduction by a blood meal: the mosquito as a model for vector endocrinology.
    Lea AO
    Acta Trop; 1975; 32(2):112-5. PubMed ID: 240256
    [No Abstract]   [Full Text] [Related]  

  • 8. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF.
    Borovsky D; Meola SM
    Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect endocrinology: action of hormones at the cellular level.
    Riddiford LM
    Annu Rev Physiol; 1980; 42():511-28. PubMed ID: 6996595
    [No Abstract]   [Full Text] [Related]  

  • 10. The adipokinetic hormone system in Culicinae (Diptera: Culicidae): molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. aegypti.
    Kaufmann C; Merzendorfer H; Gäde G
    Insect Biochem Mol Biol; 2009 Nov; 39(11):770-81. PubMed ID: 19748585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of glycogen synthesis in the mosquito by a hormone from the medial neurosecretory cells.
    Lea AO; Van Handel E
    J Insect Physiol; 1970 Feb; 16(2):319-21. PubMed ID: 5417536
    [No Abstract]   [Full Text] [Related]  

  • 12. [Autogenesis and cerebral neurosecretion in Aedes detritus (Haliday, 1833) (Diptera - Culicidae].
    Guilvard E; Raabe M; Rioux JA
    C R Acad Hebd Seances Acad Sci D; 1976 Oct; 283(10):1217-20. PubMed ID: 827359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae).
    Coon KL; Brown MR; Strand MR
    Parasit Vectors; 2016 Jun; 9(1):375. PubMed ID: 27363842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of sodium uptake by the larva of the mosquito Aëdes aegypti (L.).
    Stobbart RH
    J Exp Biol; 1971 Feb; 54(1):29-66. PubMed ID: 5549769
    [No Abstract]   [Full Text] [Related]  

  • 15. Insect endocrinology: regulation of endocrine glands, hormone titer, and hormone metabolism.
    Gilbert LI; Bollenbacher WE; Granger NA
    Annu Rev Physiol; 1980; 42():493-510. PubMed ID: 6996594
    [No Abstract]   [Full Text] [Related]  

  • 16. Neurosecretory cells in insect brain and production of hypoglycaemic hormone.
    Normann TC
    Nature; 1975 Mar; 254(5497):259-61. PubMed ID: 1113892
    [No Abstract]   [Full Text] [Related]  

  • 17. The use of a chemically defined artificial diet as a tool to study Aedes aegypti physiology.
    Talyuli OA; Bottino-Rojas V; Taracena ML; Soares AL; Oliveira JH; Oliveira PL
    J Insect Physiol; 2015 Dec; 83():1-7. PubMed ID: 26578294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First report of Stegomyia aegypti (= Aedes aegypti) in Mexico City, Mexico.
    Kuri-Morales P; Correa-Morales F; González-Acosta C; Sánchez-Tejeda G; Dávalos-Becerril E; Fernanda Juárez-Franco M; Díaz-Quiñonez A; Huerta-Jimenéz H; Mejía-Guevara MD; Moreno-García M; González-Roldán JF
    Med Vet Entomol; 2017 Jun; 31(2):240-242. PubMed ID: 28106260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Endocrinal regulation of the reactivation of diapausing pupae of the cabbage butterfly Pieris brassicae L].
    Kind TV
    Dokl Akad Nauk SSSR; 1976; 229(5):1266-9. PubMed ID: 964123
    [No Abstract]   [Full Text] [Related]  

  • 20. Peptides as stimulators of egg development neurosecretory hormone release in the mosquito Aedes aegypti.
    Chang YY; Judson CL
    Comp Biochem Physiol C Comp Pharmacol; 1977; 57(2):147-51. PubMed ID: 20271
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.