BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28529158)

  • 41. [Experimental approach to the gene therapy of motor neuron disease with the use of genes hypoxia-inducible factors].
    Ismailov ShM; Barykova IuA; Shmarov MM; Tarantul VZ; Barskov IV; Kucherianu VG; Brylev LV; Logunov DIu; Tutykhina IL; Bocharov EV; Zakharova MN; Naroditskiĭ BS; Illarioshkin SN
    Genetika; 2014 May; 50(5):591-601. PubMed ID: 25715475
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effects of neural stem cells transplantation on glial cell line-derived neurotrophic factor and growth associated protein 43 after spinal cord injury in rats].
    Wang Y; Lu G; Li L; Han Z; Yang M; Huang T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jun; 19(6):416-9. PubMed ID: 16038451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transplantation of Human Amniotic Mesenchymal Stem Cells Promotes Functional Recovery in a Rat Model of Traumatic Spinal Cord Injury.
    Zhou HL; Zhang XJ; Zhang MY; Yan ZJ; Xu ZM; Xu RX
    Neurochem Res; 2016 Oct; 41(10):2708-2718. PubMed ID: 27351200
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intrathecal granulocyte colony-stimulating factor modulate glial cell line-derived neurotrophic factor and vascular endothelial growth factor A expression in glial cells after experimental spinal cord ischemia.
    Chen CH; Huang SY; Chen NF; Feng CW; Hung HC; Sung CS; Jean YH; Wen ZH; Chen WF
    Neuroscience; 2013 Jul; 242():39-52. PubMed ID: 23548516
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exogenous administration of glial cell line-derived neurotrophic factor improves recovery after spinal cord injury.
    Kao CH; Chen SH; Chio CC; Chang CK; Lin MT
    Resuscitation; 2008 Jun; 77(3):395-400. PubMed ID: 18367307
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular and cellular changes in the post-traumatic spinal cord remodeling after autoinfusion of a genetically-enriched leucoconcentrate in a mini-pig model.
    Davleeva MA; Garifulin RR; Bashirov FV; Izmailov AA; Nurullin LF; Salafutdinov II; Gatina DZ; Shcherbinin DN; Lysenko AA; Tutykhina IL; Shmarov MM; Islamov RR
    Neural Regen Res; 2023 Jul; 18(7):1505-1511. PubMed ID: 36571355
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New Therapy for Spinal Cord Injury: Autologous Genetically-Enriched Leucoconcentrate Integrated with Epidural Electrical Stimulation.
    Islamov R; Bashirov F; Izmailov A; Fadeev F; Markosyan V; Sokolov M; Shmarov M; Logunov D; Naroditsky B; Lavrov I
    Cells; 2022 Jan; 11(1):. PubMed ID: 35011706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells to Deliver Growth Factors in the Skeletal Muscle of a Familial ALS Rat Model.
    Suzuki M; Svendsen CN
    Methods Mol Biol; 2016; 1382():325-36. PubMed ID: 26611598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury.
    Hawryluk GW; Mothe A; Wang J; Wang S; Tator C; Fehlings MG
    Stem Cells Dev; 2012 Aug; 21(12):2222-38. PubMed ID: 22085254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Therapeutic Use of 3β-[N-(N',N'-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury.
    Gwak SJ; Yun Y; Yoon DH; Kim KN; Ha Y
    PLoS One; 2016; 11(1):e0147389. PubMed ID: 26824765
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Peripherally delivered Adeno-associated viral vectors for spinal cord injury repair.
    Sydney-Smith JD; Spejo AB; Warren PM; Moon LDF
    Exp Neurol; 2022 Feb; 348():113945. PubMed ID: 34896114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord.
    Koda M; Kamada T; Hashimoto M; Murakami M; Shirasawa H; Sakao S; Ino H; Yoshinaga K; Koshizuka S; Moriya H; Yamazaki M
    Eur Spine J; 2007 Dec; 16(12):2206-14. PubMed ID: 17885772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries.
    Thomas AM; Palma JL; Shea LD
    J Control Release; 2015 Apr; 204():1-10. PubMed ID: 25724274
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro non-viral lipofectamine delivery of the gene for glial cell line-derived neurotrophic factor to human umbilical cord blood CD34+ cells.
    Yu G; Borlongan CV; Ou Y; Stahl CE; Yu S; Bae E; Kaneko Y; Yang T; Yuan C; Fang L
    Brain Res; 2010 Apr; 1325():147-54. PubMed ID: 20171195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat.
    Han X; Yang N; Cui Y; Xu Y; Dang G; Song C
    Neurosci Lett; 2012 Jul; 521(2):136-41. PubMed ID: 22683506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of neural stem cells modified with hypoxia/neuron-specific VEGF expression system for spinal cord injury.
    Yun Y; Oh J; Kim Y; Kim G; Lee M; Ha Y
    Gene Ther; 2018 Jan; 25(1):27-38. PubMed ID: 29155421
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Posttraumatic changes of rat spinal cord after transplantation of human umbilical cord blood mononuclear cells transfected with VEGF and FGF2 genes].
    Shaĭmardanova GF; Mukhamedshina IaO; Arkhipova SS; Salafutdinov II; Rizvanov AA; Chelyshev IuA
    Morfologiia; 2011; 140(6):36-42. PubMed ID: 22506349
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neural stem cells modified by a hypoxia-inducible VEGF gene expression system improve cell viability under hypoxic conditions and spinal cord injury.
    Lian Jin H; Pennant WA; Hyung Lee M; Su S; Ah Kim H; Lu Liu M; Soo Oh J; Cho J; Nyun Kim K; Heum Yoon D; Ha Y
    Spine (Phila Pa 1976); 2011 May; 36(11):857-64. PubMed ID: 21192293
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats.
    Nishio Y; Koda M; Kamada T; Someya Y; Yoshinaga K; Okada S; Harada H; Okawa A; Moriya H; Yamazaki M
    J Neurosurg Spine; 2006 Nov; 5(5):424-33. PubMed ID: 17120892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.