These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28529380)

  • 1. The Hypernetted Chain Equations for Periodic Systems.
    Panholzer M
    J Low Temp Phys; 2017; 187(5):639-645. PubMed ID: 28529380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple relationship between the virial-route hypernetted-chain and the compressibility-route Percus-Yevick values of the fourth virial coefficient.
    Santos A; Manzano G
    J Chem Phys; 2010 Apr; 132(14):144508. PubMed ID: 20406002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly asymmetric electrolytes in the primitive model: hypernetted chain solution in arbitrary spatial dimensions.
    Heinen M; Allahyarov E; Löwen H
    J Comput Chem; 2014 Feb; 35(4):275-89. PubMed ID: 24122811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reference hypernetted chain theory for ferrofluid bilayer: distribution functions compared with Monte Carlo.
    Polyakov EA; Vorontsov-Velyaminov PN
    J Chem Phys; 2014 Aug; 141(8):084109. PubMed ID: 25173007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of the iterative solutions of integral equations as one phase freezing criterion.
    Fantoni R; Pastore G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046104. PubMed ID: 14682999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A classical-map simulation of two-dimensional electron fluid: an extension of classical-map hypernetted-chain theory beyond the hypernetted-chain approximation.
    Totsuji C; Miyake T; Nakanishi K; Tsuruta K; Totsuji H
    J Phys Condens Matter; 2009 Jan; 21(4):045502. PubMed ID: 21715808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective interactions in the colloidal suspensions from hypernetted-chain theory.
    Léger D; Levesque D
    J Chem Phys; 2005 Sep; 123(12):124910. PubMed ID: 16392530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: the case of big coions.
    Guerrero-García GI; González-Tovar E; Chávez-Páez M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021501. PubMed ID: 19792127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion structure in warm dense matter: benchmarking solutions of hypernetted-chain equations by first-principle simulations.
    Wünsch K; Vorberger J; Gericke DO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):010201. PubMed ID: 19256989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unified Fourier theory for time-of-flight PET data.
    Li Y; Matej S; Metzler SD
    Phys Med Biol; 2016 Jan; 61(2):601-24. PubMed ID: 26689836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient treatment of solvation shells in 3D molecular theory of solvation.
    Gusarov S; Pujari BS; Kovalenko A
    J Comput Chem; 2012 Jun; 33(17):1478-94. PubMed ID: 22522583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation.
    Tanaka S
    J Chem Phys; 2016 Dec; 145(21):214104. PubMed ID: 28799346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials.
    DeGottardi W; Sen D; Vishveshwara S
    Phys Rev Lett; 2013 Apr; 110(14):146404. PubMed ID: 25167015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the hypernetted chain approximation to the electrical double layer for 2:1 and 1:2 electrolytes.
    Fawcett WR; Henderson DJ
    J Phys Chem B; 2005 Dec; 109(47):22608-13. PubMed ID: 16853943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourth virial coefficient of additive hard-sphere mixtures in the Percus-Yevick and hypernetted-chain approximations.
    Beltrán-Heredia E; Santos A
    J Chem Phys; 2014 Apr; 140(13):134507. PubMed ID: 24712801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of the replica ornstein-zernike methodology for studying ionic membrane equilibria.
    Hribar-Lee B
    Acta Chim Slov; 2012 Sep; 59(3):528-35. PubMed ID: 24061306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypernetted-chain-like closure of Ornstein-Zernike equation in multibody dissipative particle dynamics.
    Mo CJ; Qin LZ; Yang LJ
    Phys Rev E; 2017 Oct; 96(4-1):043303. PubMed ID: 29347468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random Phase Approximation for Periodic Systems Employing Direct Coulomb Lattice Summation.
    Grundei MM; Burow AM
    J Chem Theory Comput; 2017 Mar; 13(3):1159-1175. PubMed ID: 28182412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-quantum NMR spin dynamics of inhomogeneous one-dimensional systems in solids.
    Doronin SI; Fel'dman EB
    Solid State Nucl Magn Reson; 2005 Sep; 28(2-4):111-6. PubMed ID: 16051472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaotic dynamics of one-dimensional systems with periodic boundary conditions.
    Kumar P; Miller BN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062918. PubMed ID: 25615175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.