These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 28529384)
1. The PELskin project-part V: towards the control of the flow around aerofoils at high angle of attack using a self-activated deployable flap. Rosti ME; Kamps L; Bruecker C; Omidyeganeh M; Pinelli A Meccanica; 2017; 52(8):1811-1824. PubMed ID: 28529384 [TBL] [Abstract][Full Text] [Related]
2. Numerical Simulation of a Passive Control of the Flow Around an Aerofoil Using a Flexible, Self Adaptive Flaplet. Rosti ME; Omidyeganeh M; Pinelli A Flow Turbul Combust; 2018; 100(4):1111-1143. PubMed ID: 30069151 [TBL] [Abstract][Full Text] [Related]
3. Covert-inspired flaps for lift enhancement and stall mitigation. Duan C; Wissa A Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33784648 [TBL] [Abstract][Full Text] [Related]
4. Feather-inspired flow control device across flight regimes. Othman AK; Nair NJ; Goza A; Wissa A Bioinspir Biomim; 2023 Oct; 18(6):. PubMed ID: 37714167 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control. Wang C; Tang H Bioinspir Biomim; 2018 May; 13(4):046005. PubMed ID: 29648545 [TBL] [Abstract][Full Text] [Related]
6. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil. Johnston J; Gopalarathnam A Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691 [TBL] [Abstract][Full Text] [Related]
7. When vortices stick: an aerodynamic transition in tiny insect flight. Miller LA; Peskin CS J Exp Biol; 2004 Aug; 207(Pt 17):3073-88. PubMed ID: 15277562 [TBL] [Abstract][Full Text] [Related]
8. Numerical Simulation of the Transient Flow around the Combined Morphing Leading-Edge and Trailing-Edge Airfoil. Bashir M; Negahban MH; Botez RM; Wong T Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392154 [TBL] [Abstract][Full Text] [Related]
9. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651 [TBL] [Abstract][Full Text] [Related]
10. THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS. Dickinson M J Exp Biol; 1994 Jul; 192(1):179-206. PubMed ID: 9317589 [TBL] [Abstract][Full Text] [Related]
11. Flow structure modifications by leading-edge tubercles on a 3D wing. Kim H; Kim J; Choi H Bioinspir Biomim; 2018 Oct; 13(6):066011. PubMed ID: 30362460 [TBL] [Abstract][Full Text] [Related]
13. Experimental study of a passive control of airfoil lift using bioinspired feather flap. Wang L; Alam MM; Zhou Y Bioinspir Biomim; 2019 Sep; 14(6):066005. PubMed ID: 31434057 [TBL] [Abstract][Full Text] [Related]
14. Control of vortex shedding on two- and three-dimensional aerofoils. Colonius T; Williams DR Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1525-39. PubMed ID: 21382829 [TBL] [Abstract][Full Text] [Related]
15. Feather roughness reduces flow separation during low Reynolds number glides of swifts. van Bokhorst E; de Kat R; Elsinga GE; Lentink D J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563 [TBL] [Abstract][Full Text] [Related]
16. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298 [TBL] [Abstract][Full Text] [Related]
17. A vortex model for forces and moments on low-aspect-ratio wings in side-slip with experimental validation. DeVoria AC; Mohseni K Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160760. PubMed ID: 28293139 [TBL] [Abstract][Full Text] [Related]
18. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Kruyt JW; van Heijst GF; Altshuler DL; Lentink D J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539 [TBL] [Abstract][Full Text] [Related]
19. Numerical investigation of low-noise airfoils inspired by the down coat of owls. Bodling A; Sharma A Bioinspir Biomim; 2018 Dec; 14(1):016013. PubMed ID: 30523914 [TBL] [Abstract][Full Text] [Related]
20. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2015 Sep; 10(5):056009. PubMed ID: 26372422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]