These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28529402)

  • 1. Lifetime-resolved Photoacoustic (LPA) Spectroscopy for monitoring Oxygen change and Photodynamic Therapy (PDT).
    Jo J; Lee CH; Kopelman R; Wang X
    Proc SPIE Int Soc Opt Eng; 2016 Feb; 9708():. PubMed ID: 28529402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoacoustic lifetime imaging of dissolved oxygen using methylene blue.
    Ashkenazi S
    J Biomed Opt; 2010; 15(4):040501. PubMed ID: 20799768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-photosensitizers Engineered to Generate a Tunable Mix of Reactive Oxygen Species, for Optimizing Photodynamic Therapy, Using a Microfluidic Device.
    Yoon HK; Lou X; Chen YC; Koo Lee YE; Yoon E; Kopelman R
    Chem Mater; 2014 Feb; 26(4):1592-1600. PubMed ID: 24701030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells.
    Yu J; Hsu CH; Huang CC; Chang PY
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):432-41. PubMed ID: 25494339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-in-One Theranostic Nanoplatform Based on Hollow MoS
    Wang J; Liu L; You Q; Song Y; Sun Q; Wang Y; Cheng Y; Tan F; Li N
    Theranostics; 2018; 8(4):955-971. PubMed ID: 29463993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy.
    Qin M; Hah HJ; Kim G; Nie G; Lee YE; Kopelman R
    Photochem Photobiol Sci; 2011 May; 10(5):832-41. PubMed ID: 21479315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy.
    Gao S; Wang G; Qin Z; Wang X; Zhao G; Ma Q; Zhu L
    Biomaterials; 2017 Jan; 112():324-335. PubMed ID: 27776285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles.
    Seong DY; Kim YJ
    J Photochem Photobiol B; 2015 May; 146():34-43. PubMed ID: 25794464
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Jo J; Lee CH; Folz J; Tan JWY; Wang X; Kopelman R
    ACS Nano; 2019 Dec; 13(12):14024-14032. PubMed ID: 31820930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic monitoring of oxygen partial pressure in photodynamic therapy using pump-probe-based photoacoustic tomography.
    Xiao J; He X; Xie Z; Wang B
    Opt Lett; 2024 Mar; 49(5):1369-1372. PubMed ID: 38427015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model.
    Dos Santos MSC; Gouvêa AL; de Moura LD; Paterno LG; de Souza PEN; Bastos AP; Damasceno EAM; Veiga-Souza FH; de Azevedo RB; Báo SN
    J Nanobiotechnology; 2018 Jan; 16(1):9. PubMed ID: 29382332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O
    Lin T; Zhao X; Zhao S; Yu H; Cao W; Chen W; Wei H; Guo H
    Theranostics; 2018; 8(4):990-1004. PubMed ID: 29463995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy.
    Khdair A; Gerard B; Handa H; Mao G; Shekhar MP; Panyam J
    Mol Pharm; 2008; 5(5):795-807. PubMed ID: 18646775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-Enhanced Photodynamic Cancer Therapy by Upconversion Nanoparticles Conjugated with Au Nanorods.
    Chen CW; Chan YC; Hsiao M; Liu RS
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32108-32119. PubMed ID: 27933825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosensitiser functionalised luminescent upconverting nanoparticles for efficient photodynamic therapy of breast cancer cells.
    Buchner M; García Calavia P; Muhr V; Kröninger A; Baeumner AJ; Hirsch T; Russell DA; Marín MJ
    Photochem Photobiol Sci; 2019 Jan; 18(1):98-109. PubMed ID: 30328457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polylysine modified conjugated polymer nanoparticles loaded with the singlet oxygen probe 1,3-diphenylisobenzofuran and the photosensitizer indocyanine green for use in fluorometric sensing and in photodynamic therapy.
    Wang XH; Yu YX; Cheng K; Yang W; Liu YA; Peng HS
    Mikrochim Acta; 2019 Nov; 186(12):842. PubMed ID: 31768653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer-Protein Hydrogel Nanomatrix for Stabilization of Indocyanine Green towards Targeted Fluorescence and Photoacoustic Bio-imaging.
    Yoon HK; Ray A; Lee YE; Kim G; Wang X; Kopelman R
    J Mater Chem B; 2013 Nov; 1(41):. PubMed ID: 24224083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Theranostic Agents Based on Pluronic Stabilized Gold Nanoaggregates Loaded with Methylene Blue for Multimodal Cell Imaging and Enhanced Photodynamic Therapy.
    Simon T; Potara M; Gabudean AM; Licarete E; Banciu M; Astilean S
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16191-201. PubMed ID: 26151097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluorescent nanoprobe for real-time monitoring of intracellular singlet oxygen during photodynamic therapy.
    Ping JT; Peng HS; Qin J; You FT; Wang YQ; Chen GX; Song M
    Mikrochim Acta; 2018 Apr; 185(5):269. PubMed ID: 29700623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of methylene blue photodynamic therapy on human neutrophil functional responses.
    Trevisan E; Menegazzi R; Zabucchi G; Troian B; Prato S; Vita F; Rapozzi V; Grandolfo M; Borelli V
    J Photochem Photobiol B; 2019 Oct; 199():111605. PubMed ID: 31473428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.