BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 28529499)

  • 1. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling.
    Parker L; Shaw CS; Stepto NK; Levinger I
    Front Endocrinol (Lausanne); 2017; 8():87. PubMed ID: 28529499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute High-Intensity Interval Exercise-Induced Redox Signaling Is Associated with Enhanced Insulin Sensitivity in Obese Middle-Aged Men.
    Parker L; Stepto NK; Shaw CS; Serpiello FR; Anderson M; Hare DL; Levinger I
    Front Physiol; 2016; 7():411. PubMed ID: 27695421
    [No Abstract]   [Full Text] [Related]  

  • 3. Redox signaling in skeletal muscle: role of aging and exercise.
    Ji LL
    Adv Physiol Educ; 2015 Dec; 39(4):352-9. PubMed ID: 26628659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Janus Head of Oxidative Stress in Metabolic Diseases and During Physical Exercise.
    Pesta D; Roden M
    Curr Diab Rep; 2017 Jun; 17(6):41. PubMed ID: 28439848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise and hormesis: activation of cellular antioxidant signaling pathway.
    Ji LL; Gomez-Cabrera MC; Vina J
    Ann N Y Acad Sci; 2006 May; 1067():425-35. PubMed ID: 16804022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling.
    Ji LL
    Free Radic Biol Med; 2008 Jan; 44(2):142-52. PubMed ID: 18191750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle.
    Bouviere J; Fortunato RS; Dupuy C; Werneck-de-Castro JP; Carvalho DP; Louzada RA
    Antioxidants (Basel); 2021 Mar; 10(4):. PubMed ID: 33808211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upregulation of uncoupling protein-3 in skeletal muscle during exercise: a potential antioxidant function.
    Jiang N; Zhang G; Bo H; Qu J; Ma G; Cao D; Wen L; Liu S; Ji LL; Zhang Y
    Free Radic Biol Med; 2009 Jan; 46(2):138-45. PubMed ID: 18977294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!
    Cobley JN; Moult PR; Burniston JG; Morton JP; Close GL
    Biogerontology; 2015 Apr; 16(2):249-64. PubMed ID: 25537184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant and anti-inflammatory effects of exercise: role of redox signaling.
    Ji LL; Zhang Y
    Free Radic Res; 2014 Jan; 48(1):3-11. PubMed ID: 24083482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox biology of exercise: an integrative and comparative consideration of some overlooked issues.
    Nikolaidis MG; Kyparos A; Spanou C; Paschalis V; Theodorou AA; Vrabas IS
    J Exp Biol; 2012 May; 215(Pt 10):1615-25. PubMed ID: 22539728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidants preserve redox balance and inhibit c-Jun-N-terminal kinase pathway while improving insulin signaling in fat-fed rats: evidence for the role of oxidative stress on IRS-1 serine phosphorylation and insulin resistance.
    Vinayagamoorthi R; Bobby Z; Sridhar MG
    J Endocrinol; 2008 May; 197(2):287-96. PubMed ID: 18434358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidants in skeletal muscle physiology, a radically different approach.
    Carmen Gomez-Cabrera M
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S1-2. PubMed ID: 26461276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress and neuronal adaptation in Alzheimer disease: the role of SAPK pathways.
    Zhu X; Raina AK; Lee HG; Chao M; Nunomura A; Tabaton M; Petersen RB; Perry G; Smith MA
    Antioxid Redox Signal; 2003 Oct; 5(5):571-6. PubMed ID: 14580312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood glutathione homeostasis as a determinant of resting and exercise-induced oxidative stress in young men.
    Laaksonen DE; Atalay M; Niskanen L; Uusitupa M; Hänninen O; Sen CK
    Redox Rep; 1999; 4(1-2):53-9. PubMed ID: 10714277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress.
    Puente-Maestu L; Tejedor A; Lázaro A; de Miguel J; Alvarez-Sala L; González-Aragoneses F; Simón C; Agustí A
    Am J Respir Cell Mol Biol; 2012 Sep; 47(3):358-62. PubMed ID: 22493009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of exercise intensity on systemic oxidative stress and antioxidant capacity.
    Parker L; McGuckin TA; Leicht AS
    Clin Physiol Funct Imaging; 2014 Sep; 34(5):377-83. PubMed ID: 24283399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invited review: Exercise training-induced changes in insulin signaling in skeletal muscle.
    Zierath JR
    J Appl Physiol (1985); 2002 Aug; 93(2):773-81. PubMed ID: 12133891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension.
    Yogi A; Mercure C; Touyz J; Callera GE; Montezano AC; Aranha AB; Tostes RC; Reudelhuber T; Touyz RM
    Hypertension; 2008 Feb; 51(2):500-6. PubMed ID: 18195161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ibuprofen treatment blunts early translational signaling responses in human skeletal muscle following resistance exercise.
    Markworth JF; Vella LD; Figueiredo VC; Cameron-Smith D
    J Appl Physiol (1985); 2014 Jul; 117(1):20-8. PubMed ID: 24833778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.