These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 28529717)

  • 21. Non-linear Normalization for Non-UMI Single Cell RNA-Seq.
    Wu Z; Su K; Wu H
    Front Genet; 2021; 12():612670. PubMed ID: 33897755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of the 3' mRNA-Seq using unique molecular identifiers in highly degraded RNA derived from formalin-fixed, paraffin-embedded tissue.
    Jang JS; Holicky E; Lau J; McDonough S; Mutawe M; Koster MJ; Warrington KJ; Cuninngham JM
    BMC Genomics; 2021 Oct; 22(1):759. PubMed ID: 34689749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9-based depletion of 16S ribosomal RNA improves library complexity of single-cell RNA-sequencing.
    Wang KT; Adler CE
    bioRxiv; 2023 Jun; ():. PubMed ID: 37292639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.
    Rizzetto S; Eltahla AA; Lin P; Bull R; Lloyd AR; Ho JWK; Venturi V; Luciani F
    Sci Rep; 2017 Oct; 7(1):12781. PubMed ID: 28986563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular spikes: a gold standard for single-cell RNA counting.
    Ziegenhain C; Hendriks GJ; Hagemann-Jensen M; Sandberg R
    Nat Methods; 2022 May; 19(5):560-566. PubMed ID: 35468967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.
    Elyanow R; Dumitrascu B; Engelhardt BE; Raphael BJ
    Genome Res; 2020 Feb; 30(2):195-204. PubMed ID: 31992614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enriching and Characterizing T Cell Repertoires from 3' Barcoded Single-Cell Whole Transcriptome Amplification Products.
    Jivanjee T; Ibrahim S; Nyquist SK; Gatter GJ; Bromley JD; Jaiswal S; Berger B; Behar SM; Love JC; Shalek AK
    Methods Mol Biol; 2022; 2574():159-182. PubMed ID: 36087201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model.
    Townes FW; Hicks SC; Aryee MJ; Irizarry RA
    Genome Biol; 2019 Dec; 20(1):295. PubMed ID: 31870412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of zero counts to better understand the discrepancies between bulk and single-cell RNA-Seq platforms.
    Zyla J; Papiez A; Zhao J; Qu R; Li X; Kluger Y; Polanska J; Hatzis C; Pusztai L; Marczyk M
    Comput Struct Biotechnol J; 2023; 21():4663-4674. PubMed ID: 37841335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unique Molecular Identifiers reveal a novel sequencing artefact with implications for RNA-Seq based gene expression analysis.
    Sena JA; Galotto G; Devitt NP; Connick MC; Jacobi JL; Umale PE; Vidali L; Bell CJ
    Sci Rep; 2018 Sep; 8(1):13121. PubMed ID: 30177820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy.
    Smith T; Heger A; Sudbery I
    Genome Res; 2017 Mar; 27(3):491-499. PubMed ID: 28100584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing.
    Fan X; Tang D; Liao Y; Li P; Zhang Y; Wang M; Liang F; Wang X; Gao Y; Wen L; Wang D; Wang Y; Tang F
    PLoS Biol; 2020 Dec; 18(12):e3001017. PubMed ID: 33378329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Toxicotranscriptomics of Single Cell RNA-Seq and Conventional RNA-Seq in TCDD-Exposed Testicular Tissue.
    Haimbaugh A; Meyer D; Akemann C; Gurdziel K; Baker TR
    Front Toxicol; 2022; 4():821116. PubMed ID: 35615540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dozer: Debiased personalized gene co-expression networks for population-scale scRNA-seq data.
    Lu S; Keleş S
    bioRxiv; 2023 Apr; ():. PubMed ID: 37163070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of Single-Cell RNA- and CAGE-seq Reveals Tooth-Enriched Genes.
    Chiba Y; Yoshizaki K; Tian T; Miyazaki K; Martin D; ; Saito K; Yamada A; Fukumoto S
    J Dent Res; 2021 Nov; 101(5):220345211049785. PubMed ID: 34806461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inverse weighting method with jackknife variance estimator for differential expression analysis of single-cell RNA sequencing data.
    Zhou L; Pan Q
    Comput Biol Chem; 2022 Oct; 100():107733. PubMed ID: 35926443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level.
    Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2019 Jul; 35(14):i136-i144. PubMed ID: 31510649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing infectious disease by single-cell RNA sequencing: Progresses and perspectives.
    Luo G; Gao Q; Zhang S; Yan B
    Comput Struct Biotechnol J; 2020; 18():2962-2971. PubMed ID: 33106757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.