These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28529821)

  • 1. Fabrication of silicon films from patterned protruded seeds.
    Zeng H; Zhang W; Li J; Wang C; Yang H; Chen Y; Chen X; Liu D
    AIP Adv; 2017 May; 7(5):055307. PubMed ID: 28529821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced efficiency of crystalline Si solar cells based on kerfless-thin wafers with nanohole arrays.
    Lee HS; Suk J; Kim H; Kim J; Song J; Jeong DS; Park JK; Kim WM; Lee DK; Choi KJ; Ju BK; Lee TS; Kim I
    Sci Rep; 2018 Feb; 8(1):3504. PubMed ID: 29472631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin Crystalline Silicon Nano and Micro Membranes with High Areal Density for Low-Cost Flexible Electronics.
    Lee JY; Shin J; Kim K; Ju JE; Dutta A; Kim TS; Cho YU; Kim T; Hu L; Min WK; Jung HS; Park YS; Won SM; Yeo WH; Moon J; Khang DY; Kim HJ; Ahn JH; Cheng H; Yu KJ; Rogers JA
    Small; 2023 Sep; 19(39):e2302597. PubMed ID: 37246255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully Bottom-Up Waste-Free Growth of Ultrathin Silicon Wafer via Self-Releasing Seed Layer.
    Hong JE; Lee Y; Mo SI; Jeong HS; An JH; Song HE; Oh J; Bang J; Oh JH; Kim KH
    Adv Mater; 2021 Oct; 33(41):e2103708. PubMed ID: 34476855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance flexible thin-film transistors exfoliated from bulk wafer.
    Zhai Y; Mathew L; Rao R; Xu D; Banerjee SK
    Nano Lett; 2012 Nov; 12(11):5609-15. PubMed ID: 23092185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavity-BOX SOI: Advanced Silicon Substrate with Pre-Patterned BOX for Monolithic MEMS Fabrication.
    Kluba MM; Li J; Parkkinen K; Louwerse M; Snijder J; Dekker R
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33918068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar Energy Materials-Evolution and Niche Applications: A Literature Review.
    Seroka NS; Taziwa R; Khotseng L
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers.
    Liu FK; Huang PW; Chang YC; Ko FH; Chu TC
    Langmuir; 2005 Mar; 21(6):2519-25. PubMed ID: 15752048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Black Ultra-Thin Crystalline Silicon Wafers Reach the 4n
    Garín M; Pasanen TP; López G; Vähänissi V; Chen K; Martín I; Savin H
    Small; 2023 Sep; 19(39):e2302250. PubMed ID: 37259265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced APCVD-processes for high-temperature grown crystalline silicon thin film solar cells.
    Driessen M; Merkel B; Reber S
    J Nanosci Nanotechnol; 2011 Sep; 11(9):8174-9. PubMed ID: 22097550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous Wafer Bonding Technology and Thin-Film Transfer Technology-Enabling Platform for the Next Generation Applications beyond 5G.
    Ren Z; Xu J; Le X; Lee C
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanometer-Thick Gold on Silicon as a Proxy for Single-Crystal Gold for the Electrodeposition of Epitaxial Cuprous Oxide Thin Films.
    Switzer JA; Hill JC; Mahenderkar NK; Liu YC
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15828-37. PubMed ID: 27232100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Wafer-Scale CVD Graphene Growth under Platinum Thin-Films.
    Hagendoorn Y; Pandraud G; Vollebregt S; Morana B; Sarro PM; Steeneken PG
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reclaiming process for solar cell silicon wafer surfaces.
    Pa PS
    J Nanosci Nanotechnol; 2011 Jan; 11(1):691-5. PubMed ID: 21446525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of Dark Current in CMOS Image Sensor Pixels Using Hydrocarbon-Molecular-Ion-Implanted Double Epitaxial Si Wafers.
    Onaka-Masada A; Kadono T; Okuyama R; Hirose R; Kobayashi K; Suzuki A; Koga Y; Kurita K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33228009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity Gettering Design of Hydrocarbon⁻Molecular⁻Ion⁻Implanted Silicon Wafers Using Dark Current Spectroscopy for CMOS Image Sensors.
    Kurita K; Kadono T; Shigematsu S; Hirose R; Okuyama R; Onaka-Masada A; Okuda H; Koga Y
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31060216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.
    Gao Y; Asadirad M; Yao Y; Dutta P; Galstyan E; Shervin S; Lee KH; Pouladi S; Sun S; Li Y; Rathi M; Ryou JH; Selvamanickam V
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29565-29572. PubMed ID: 27734670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and scalable route to wafer-size patterned graphene.
    Liu LH; Zorn G; Castner DG; Solanki R; Lerner MM; Yan M
    J Mater Chem; 2010 Jun; 20(24):5041-5046. PubMed ID: 24155570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sinusoidal nanotextures for light management in silicon thin-film solar cells.
    Köppel G; Rech B; Becker C
    Nanoscale; 2016 Apr; 8(16):8722-8. PubMed ID: 27065440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell.
    Kiani A; Venkatakrishnan K; Tan B
    Opt Express; 2014 Jan; 22 Suppl 1():A120-31. PubMed ID: 24921988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.