BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28529973)

  • 1. High Affinity Mannotetraose as an Alternative to Dextran in ConA Based Fluorescent Affinity Glucose Assay Due to Improved FRET Efficiency.
    Locke AK; Cummins BM; Coté GL
    ACS Sens; 2016 May; 1(5):584-590. PubMed ID: 28529973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming the aggregation problem: a new type of fluorescent ligand for ConA-based glucose sensing.
    Cummins BM; Li M; Locke AK; Birch DJS; Vigh G; Coté GL
    Biosens Bioelectron; 2015 Jan; 63():53-60. PubMed ID: 25058939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEGylation of concanavalin A to improve its stability for an in vivo glucose sensing assay.
    Locke AK; Cummins BM; Abraham AA; Coté GL
    Anal Chem; 2014 Sep; 86(18):9091-7. PubMed ID: 25133655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring.
    Ballerstadt R; Evans C; Gowda A; McNichols R
    Diabetes Technol Ther; 2006 Jun; 8(3):296-311. PubMed ID: 16800751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of FRET in a glucose-sensitive affinity system with frequency-domain lifetime spectroscopy.
    Liang F; Pan T; Sevick-Muraca EM
    Photochem Photobiol; 2005; 81(6):1386-94. PubMed ID: 16120004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer-based near-infrared fluorescence sensor for glucose monitoring.
    Ballerstadt R; Gowda A; McNichols R
    Diabetes Technol Ther; 2004 Apr; 6(2):191-200. PubMed ID: 15117585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular distribution sensing in a fluorescence resonance energy transfer based affinity assay for glucose.
    Rolinski OJ; Birch DJ; McCartney L; Pickup JC
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Sep; 57(11):2245-54. PubMed ID: 11603841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose sensors based on microcapsules containing an orange/red competitive binding resonance energy transfer assay.
    Chinnayelka S; McShane MJ
    Diabetes Technol Ther; 2006 Jun; 8(3):269-78. PubMed ID: 16800748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis, and application of particle-based fluorescence resonance energy transfer sensors for carbohydrates and glycoproteins.
    Blagoi G; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2005 Jan; 77(2):393-9. PubMed ID: 15649033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Polarity-Sensitive Far-Red Fluorescent Probe for Glucose Sensing through Skin.
    Colvin L; Tu D; Dunlap D; Rios A; Coté G
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-based glucose sensors.
    Pickup JC; Hussain F; Evans ND; Rolinski OJ; Birch DJ
    Biosens Bioelectron; 2005 Jun; 20(12):2555-65. PubMed ID: 15854825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering.
    Deuschle K; Okumoto S; Fehr M; Looger LL; Kozhukh L; Frommer WB
    Protein Sci; 2005 Sep; 14(9):2304-14. PubMed ID: 16131659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concanavalin A for in vivo glucose sensing: a biotoxicity review.
    Ballerstadt R; Evans C; McNichols R; Gowda A
    Biosens Bioelectron; 2006 Aug; 22(2):275-84. PubMed ID: 16488598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: toward the development of an implantable sensor.
    Ballerstadt R; Kholodnykh A; Evans C; Boretsky A; Motamedi M; Gowda A; McNichols R
    Anal Chem; 2007 Sep; 79(18):6965-74. PubMed ID: 17702528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a Concanavalin A-based glucose sensor using fluorescence anisotropy.
    Cummins BM; Garza JT; Coté GL
    Anal Chem; 2013 Jun; 85(11):5397-404. PubMed ID: 23627407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates.
    Ibey BL; Beier HT; Rounds RM; Coté GL; Yadavalli VK; Pishko MV
    Anal Chem; 2005 Nov; 77(21):7039-46. PubMed ID: 16255607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.
    Dutt-Ballerstadt R; Evans C; Pillai AP; Gowda A
    Biosens Bioelectron; 2014 Nov; 61():280-4. PubMed ID: 24906086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles.
    Tang B; Cao L; Xu K; Zhuo L; Ge J; Li Q; Yu L
    Chemistry; 2008; 14(12):3637-44. PubMed ID: 18318025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable aggregation by competing biomolecular interactions.
    Duncan GA; Bevan MA
    Langmuir; 2014 Dec; 30(50):15253-60. PubMed ID: 25458784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RET nanobiosensors using affinity of an apo-enzyme toward its substrate.
    Chinnayelka S; McShane MJ
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2599-602. PubMed ID: 17270807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.