These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 28530091)
1. 3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding. Li H; Tan YJ; Leong KF; Li L ACS Appl Mater Interfaces; 2017 Jun; 9(23):20086-20097. PubMed ID: 28530091 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding. Li H; Tan YJ; Liu S; Li L ACS Appl Mater Interfaces; 2018 Apr; 10(13):11164-11174. PubMed ID: 29517901 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting of Functional Islets of Langerhans in an Alginate/Methylcellulose Hydrogel Blend. Duin S; Schütz K; Ahlfeld T; Lehmann S; Lode A; Ludwig B; Gelinsky M Adv Healthc Mater; 2019 Apr; 8(7):e1801631. PubMed ID: 30835971 [TBL] [Abstract][Full Text] [Related]
4. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
5. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Shin JY; Yeo YH; Jeong JE; Park SA; Park WH Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570 [TBL] [Abstract][Full Text] [Related]
6. Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting. Cui R; Li S; Li T; Gou X; Jing T; Zhang G; Wei G; Jin Z; Xiong X; Qu S J Mater Chem B; 2023 May; 11(17):3907-3918. PubMed ID: 37057655 [TBL] [Abstract][Full Text] [Related]
7. A systematic approach to improve printability and cell viability of methylcellulose-based bioinks. Jergitsch M; Alluè-Mengual Z; Perez RA; Mateos-Timoneda MA Int J Biol Macromol; 2023 Dec; 253(Pt 7):127461. PubMed ID: 37852401 [TBL] [Abstract][Full Text] [Related]
8. A 3D Printable and Mechanically Robust Hydrogel Based on Alginate and Graphene Oxide. Liu S; Bastola AK; Li L ACS Appl Mater Interfaces; 2017 Nov; 9(47):41473-41481. PubMed ID: 29116743 [TBL] [Abstract][Full Text] [Related]
9. 3D Bioprinting of Methylcellulose/Gelatin-Methacryloyl (MC/GelMA) Bioink with High Shape Integrity. Rastin H; Ormsby RT; Atkins GJ; Losic D ACS Appl Bio Mater; 2020 Mar; 3(3):1815-1826. PubMed ID: 35021671 [TBL] [Abstract][Full Text] [Related]
10. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996 [TBL] [Abstract][Full Text] [Related]
11. 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice. Paul K; Darzi S; McPhee G; Del Borgo MP; Werkmeister JA; Gargett CE; Mukherjee S Acta Biomater; 2019 Oct; 97():162-176. PubMed ID: 31386931 [TBL] [Abstract][Full Text] [Related]
12. Tyramine-Functionalized Alginate-Collagen Hybrid Hydrogel Inks for 3D-Bioprinting. Kim SD; Jin S; Kim S; Son D; Shin M Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956690 [TBL] [Abstract][Full Text] [Related]
13. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Gao Q; He Y; Fu JZ; Liu A; Ma L Biomaterials; 2015 Aug; 61():203-15. PubMed ID: 26004235 [TBL] [Abstract][Full Text] [Related]
14. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
15. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system. Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985 [TBL] [Abstract][Full Text] [Related]
16. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation. Park J; Lee SJ; Chung S; Lee JH; Kim WD; Lee JY; Park SA Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():678-684. PubMed ID: 27987760 [TBL] [Abstract][Full Text] [Related]
17. Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds. Seidel J; Ahlfeld T; Adolph M; Kümmritz S; Steingroewer J; Krujatz F; Bley T; Gelinsky M; Lode A Biofabrication; 2017 Nov; 9(4):045011. PubMed ID: 28837040 [TBL] [Abstract][Full Text] [Related]
18. Investigating the effect of sterilisation methods on the physical properties and cytocompatibility of methyl cellulose used in combination with alginate for 3D-bioplotting of chondrocytes. Hodder E; Duin S; Kilian D; Ahlfeld T; Seidel J; Nachtigall C; Bush P; Covill D; Gelinsky M; Lode A J Mater Sci Mater Med; 2019 Jan; 30(1):10. PubMed ID: 30610462 [TBL] [Abstract][Full Text] [Related]
19. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175 [TBL] [Abstract][Full Text] [Related]
20. Selection and Optimization of a Bioink Based on PANC-1- Plasma/Alginate/Methylcellulose for Pancreatic Tumour Modelling. Banda Sánchez C; Cubo Mateo N; Saldaña L; Valdivieso A; Earl J; González Gómez I; Rodríguez-Lorenzo LM Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]