These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28530224)

  • 1. Understanding trends in electrochemical carbon dioxide reduction rates.
    Liu X; Xiao J; Peng H; Hong X; Chan K; Nørskov JK
    Nat Commun; 2017 May; 8():15438. PubMed ID: 28530224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trends in oxygenate/hydrocarbon selectivity for electrochemical CO
    Peng HJ; Tang MT; Halldin Stenlid J; Liu X; Abild-Pedersen F
    Nat Commun; 2022 Mar; 13(1):1399. PubMed ID: 35302055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Descriptors and Thermodynamic Limitations of Electrocatalytic Carbon Dioxide Reduction on Rutile Oxide Surfaces.
    Bhowmik A; Vegge T; Hansen HA
    ChemSusChem; 2016 Nov; 9(22):3230-3243. PubMed ID: 27781396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles.
    Kim D; Resasco J; Yu Y; Asiri AM; Yang P
    Nat Commun; 2014 Sep; 5():4948. PubMed ID: 25208828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational screening of transition metal/p-block hybrid electrocatalysts for CO
    Ananthaneni S; Rankin RB
    J Comput Chem; 2020 May; 41(14):1384-1394. PubMed ID: 32100900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide.
    Singh MR; Clark EL; Bell AT
    Phys Chem Chem Phys; 2015 Jul; 17(29):18924-36. PubMed ID: 26103939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid.
    Yoo JS; Christensen R; Vegge T; Nørskov JK; Studt F
    ChemSusChem; 2016 Feb; 9(4):358-63. PubMed ID: 26663854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts.
    Liu X; Jiao Y; Zheng Y; Jaroniec M; Qiao SZ
    J Am Chem Soc; 2019 Jun; 141(24):9664-9672. PubMed ID: 31145607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces.
    Kuhl KP; Hatsukade T; Cave ER; Abram DN; Kibsgaard J; Jaramillo TF
    J Am Chem Soc; 2014 Oct; 136(40):14107-13. PubMed ID: 25259478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sharp-Tipped Zinc Nanowires as an Efficient Electrocatalyst for Carbon Dioxide Reduction.
    Li YH; Liu PF; Li C; Yang HG
    Chemistry; 2018 Oct; 24(58):15486-15490. PubMed ID: 30101997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction.
    Wang P; Qiao M; Shao Q; Pi Y; Zhu X; Li Y; Huang X
    Nat Commun; 2018 Nov; 9(1):4933. PubMed ID: 30467320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO
    Ju W; Bagger A; Hao GP; Varela AS; Sinev I; Bon V; Roldan Cuenya B; Kaskel S; Rossmeisl J; Strasser P
    Nat Commun; 2017 Oct; 8(1):944. PubMed ID: 29038491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene.
    Mistry H; Varela AS; Bonifacio CS; Zegkinoglou I; Sinev I; Choi YW; Kisslinger K; Stach EA; Yang JC; Strasser P; Cuenya BR
    Nat Commun; 2016 Jun; 7():12123. PubMed ID: 27356485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction.
    Weng Z; Wu Y; Wang M; Jiang J; Yang K; Huo S; Wang XF; Ma Q; Brudvig GW; Batista VS; Liang Y; Feng Z; Wang H
    Nat Commun; 2018 Jan; 9(1):415. PubMed ID: 29379087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the Selective Electroreduction of Carbon Dioxide to Formate by Chalcogen Modified Copper.
    García-Muelas R; Dattila F; Shinagawa T; Martín AJ; Pérez-Ramírez J; López N
    J Phys Chem Lett; 2018 Dec; 9(24):7153-7159. PubMed ID: 30537834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Insights into the Unique Role of Copper in CO
    Liu SP; Zhao M; Gao W; Jiang Q
    ChemSusChem; 2017 Jan; 10(2):387-393. PubMed ID: 27943655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemistry of Carbon Dioxide on Carbon Electrodes.
    Yang N; Waldvogel SR; Jiang X
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28357-28371. PubMed ID: 26683764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO.
    Hansen HA; Varley JB; Peterson AA; Nørskov JK
    J Phys Chem Lett; 2013 Feb; 4(3):388-92. PubMed ID: 26281729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.