These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28530292)

  • 1. Soil sorption of two nitramines derived from amine-based CO
    Gundersen CB; Breedveld GD; Foseid L; Vogt RD
    Environ Sci Process Impacts; 2017 Jun; 19(6):812-821. PubMed ID: 28530292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of available analytical technologies for qualitative and quantitative determination of nitramines.
    Lindahl S; Gundersen CB; Lundanes E
    Environ Sci Process Impacts; 2014 Aug; 16(8):1825-40. PubMed ID: 24898740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration.
    Dai N; Shah AD; Hu L; Plewa MJ; McKague B; Mitch WA
    Environ Sci Technol; 2012 Sep; 46(17):9793-801. PubMed ID: 22831707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrosamines and Nitramines in Amine-Based Carbon Dioxide Capture Systems: Fundamentals, Engineering Implications, and Knowledge Gaps.
    Yu K; Mitch WA; Dai N
    Environ Sci Technol; 2017 Oct; 51(20):11522-11536. PubMed ID: 28946738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the simulated diagenesis on sorption of naphthalene and 1-naphthol by soil organic matter and its precursors.
    Guo X; Wang X; Zhou X; Ding X; Fu B; Tao S; Xing B
    Environ Sci Technol; 2013; 47(21):12148-55. PubMed ID: 24041398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human health risk assessment of nitrosamines and nitramines for potential application in CO2 capture.
    Ravnum S; Rundén-Pran E; Fjellsbø LM; Dusinska M
    Regul Toxicol Pharmacol; 2014 Jul; 69(2):250-5. PubMed ID: 24747397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO₂ Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater.
    Dai N; Mitch WA
    Environ Sci Technol; 2015 Jul; 49(14):8878-86. PubMed ID: 26087660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative in vitro toxicity of nitrosamines and nitramines associated with amine-based carbon capture and storage.
    Wagner ED; Osiol J; Mitch WA; Plewa MJ
    Environ Sci Technol; 2014 Jul; 48(14):8203-11. PubMed ID: 24940705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling competitive cation exchange of aromatic amines in water-saturated soils.
    Fábrega JR; Jafvert CT; Li H; Lee LS
    Environ Sci Technol; 2001 Jul; 35(13):2727-33. PubMed ID: 11452599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption.
    Parolo ME; Savini MC; Loewy RM
    J Environ Manage; 2017 Jul; 196():316-322. PubMed ID: 28314220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of flue gas compositions on nitrosamine and nitramine formation in postcombustion CO2 capture systems.
    Dai N; Mitch WA
    Environ Sci Technol; 2014 Jul; 48(13):7519-26. PubMed ID: 24918477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of 2,4,6-trinitrotoluene, aniline, and nitrobenzene to dissolved and particulate soil organic matter.
    Eriksson J; Frankki S; Shchukarev A; Skyllberg U
    Environ Sci Technol; 2004 Jun; 38(11):3074-80. PubMed ID: 15224738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotoxic and mutagenic potential of nitramines.
    Fjellsbø LM; Verstraelen S; Kazimirova A; Van Rompay AR; Magdolenova Z; Dusinska M
    Environ Res; 2014 Oct; 134():39-45. PubMed ID: 25042035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption kinetics, isotherms, and mechanism of aniline aerofloat to agricultural soils with various physicochemical properties.
    Xiang L; Xiao T; Mo CH; Zhao HM; Li YW; Li H; Cai QY; Zhou DM; Wong MH
    Ecotoxicol Environ Saf; 2018 Jun; 154():84-91. PubMed ID: 29454990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence.
    Bronner G; Goss KU
    Environ Sci Technol; 2011 Feb; 45(4):1307-12. PubMed ID: 21194206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion-exchange affinity of organic cations to natural organic matter: influence of amine type and nonionic interactions at two different pHs.
    Droge ST; Goss KU
    Environ Sci Technol; 2013 Jan; 47(2):798-806. PubMed ID: 23214498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by (13)C-NMR and IR spectroscopy.
    Dutta A; Mandal A; Manna S; Singh SB; Berns AE; Singh N
    Environ Monit Assess; 2015 Oct; 187(10):620. PubMed ID: 26353968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.
    Wang B; Zhang W; Li H; Fu H; Qu X; Zhu D
    Environ Pollut; 2017 Jan; 220(Pt B):1349-1358. PubMed ID: 27838059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emissions from postcombustion CO2 capture plants.
    da Silva EF; Booth AM
    Environ Sci Technol; 2013 Jan; 47(2):659-60. PubMed ID: 23281816
    [No Abstract]   [Full Text] [Related]  

  • 20. Cosorption study of organic pollutants and dissolved organic matter in a soil.
    Flores-Céspedes F; Fernández-Pérez M; Villafranca-Sánchez M; González-Pradas E
    Environ Pollut; 2006 Aug; 142(3):449-56. PubMed ID: 16387398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.