These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 28530385)

  • 41. 3D Printing with the Commercial UV-Curable Standard Blend Resin: Optimized Process Parameters towards the Fabrication of Tiny Functional Parts.
    Bertana V; De Pasquale G; Ferrero S; Scaltrito L; Catania F; Nicosia C; Marasso SL; Cocuzza M; Perrucci F
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960275
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing.
    Alhijjaj M; Belton P; Qi S
    Eur J Pharm Biopharm; 2016 Nov; 108():111-125. PubMed ID: 27594210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multifunctional 3D printing of heterogeneous hydrogel structures.
    Nadernezhad A; Khani N; Skvortsov GA; Toprakhisar B; Bakirci E; Menceloglu Y; Unal S; Koc B
    Sci Rep; 2016 Sep; 6():33178. PubMed ID: 27630079
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D printed enzymatic microchip for multiplexed electrochemical biosensing.
    Koukouviti E; Kokkinos C
    Anal Chim Acta; 2021 Nov; 1186():339114. PubMed ID: 34756268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D printing with polymers: Challenges among expanding options and opportunities.
    Stansbury JW; Idacavage MJ
    Dent Mater; 2016 Jan; 32(1):54-64. PubMed ID: 26494268
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Research highlights: printing the future of microfabrication.
    Tseng P; Murray C; Kim D; Di Carlo D
    Lab Chip; 2014 May; 14(9):1491-5. PubMed ID: 24671475
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2).
    Damiati S; Küpcü S; Peacock M; Eilenberger C; Zamzami M; Qadri I; Choudhry H; Sleytr UB; Schuster B
    Biosens Bioelectron; 2017 Aug; 94():500-506. PubMed ID: 28343102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photocuring Three-Dimensional Printing of Thermoplastic Polymers Enabled by Hydrogen Bonds.
    Wu Y; Fei M; Chen T; Li C; Wu S; Qiu R; Liu W
    ACS Appl Mater Interfaces; 2021 May; 13(19):22946-22954. PubMed ID: 33960769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding.
    Adamopoulos C; Gharia A; Niknejad A; Stojanović V; Anwar M
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33202594
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D-Printed Immunosensor Arrays for Cancer Diagnostics.
    Sharafeldin M; Kadimisetty K; Bhalerao KS; Chen T; Rusling JF
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32806676
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations.
    Revilla-León M; Meyers MJ; Zandinejad A; Özcan M
    J Esthet Restor Dent; 2019 Jan; 31(1):51-57. PubMed ID: 30367716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
    Hong D; Chou DT; Velikokhatnyi OI; Roy A; Lee B; Swink I; Issaev I; Kuhn HA; Kumta PN
    Acta Biomater; 2016 Nov; 45():375-386. PubMed ID: 27562611
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Digital Light Processing 3D Printing of Healable and Recyclable Polymers with Tailorable Mechanical Properties.
    Zhu G; Hou Y; Xiang J; Xu J; Zhao N
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34954-34961. PubMed ID: 34270889
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol-Gel Technique.
    Chiappone A; Fantino E; Roppolo I; Lorusso M; Manfredi D; Fino P; Pirri CF; Calignano F
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5627-33. PubMed ID: 26871993
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hierarchically Designed Electron Paths in 3D Printed Energy Storage Devices.
    Park SH; Kaur M; Yun D; Kim WS
    Langmuir; 2018 Sep; 34(37):10897-10904. PubMed ID: 30149719
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sustainable Vat Photopolymerization-Based 3D-Printing through Dynamic Covalent Network Photopolymers.
    Pruksawan S; Chong YT; Zen W; Loh TJE; Wang F
    Chem Asian J; 2024 May; 19(10):e202400183. PubMed ID: 38509002
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate.
    Gowers SA; Curto VF; Seneci CA; Wang C; Anastasova S; Vadgama P; Yang GZ; Boutelle MG
    Anal Chem; 2015 Aug; 87(15):7763-70. PubMed ID: 26070023
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A general gelation strategy for 1D nanowires: dynamically stable functional gels for 3D printing flexible electronics.
    Liu S; Shi X; Li X; Sun Y; Zhu J; Pei Q; Liang J; Chen Y
    Nanoscale; 2018 Nov; 10(43):20096-20107. PubMed ID: 30371715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Performance Materials for 3D Printing in Chemical Synthesis Applications.
    Kotz F; Risch P; Helmer D; Rapp BE
    Adv Mater; 2019 Jun; 31(26):e1805982. PubMed ID: 30773705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.