These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28530517)

  • 1. Contributions of Body-Composition Characteristics to Critical Power and Anaerobic Work Capacity.
    Byrd MT; Switalla JR; Eastman JE; Wallace BJ; Clasey JL; Bergstrom HC
    Int J Sports Physiol Perform; 2018 Feb; 13(2):189-193. PubMed ID: 28530517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of Lower-Body Strength Parameters to Critical Power and Anaerobic Work Capacity.
    Byrd MT; Wallace BJ; Clasey JL; Bergstrom HC
    J Strength Cond Res; 2021 Jan; 35(1):97-101. PubMed ID: 29489713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new single work bout test to estimate critical power and anaerobic work capacity.
    Bergstrom HC; Housh TJ; Zuniga JM; Camic CL; Traylor DA; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2012 Mar; 26(3):656-63. PubMed ID: 22310519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of the two-parameter model in estimating the anaerobic work capacity.
    Dekerle J; Brickley G; Hammond AJ; Pringle JS; Carter H
    Eur J Appl Physiol; 2006 Feb; 96(3):257-64. PubMed ID: 16261386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test.
    Bergstrom HC; Housh TJ; Zuniga JM; Traylor DA; Lewis RW; Camic CL; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2014 Mar; 28(3):592-600. PubMed ID: 24566607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reproducibility of estimates of critical power and anaerobic work capacity in upper-body exercise.
    Taylor SA; Batterham AM
    Eur J Appl Physiol; 2002 May; 87(1):43-9. PubMed ID: 12012075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of normobaric hypoxia on upper body critical power and anaerobic working capacity.
    La Monica MB; Fukuda DH; Starling-Smith TM; Wang R; Hoffman JR; Stout JR
    Respir Physiol Neurobiol; 2018 Feb; 249():1-6. PubMed ID: 29247712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of Resistance Settings Based on Body Weight for the 3-Minute All-Out Critical Power Test.
    Schulte MJ; Clasey JL; Fleenor BS; Bergstrom HC
    Int J Exerc Sci; 2018; 11(4):585-597. PubMed ID: 29541334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men.
    Kendall KL; Smith AE; Graef JL; Fukuda DH; Moon JR; Beck TW; Cramer JT; Stout JR
    J Strength Cond Res; 2009 Sep; 23(6):1663-9. PubMed ID: 19675499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The y-intercept of the critical power function as a measure of anaerobic work capacity.
    Jenkins DG; Quigley BM
    Ergonomics; 1991 Jan; 34(1):13-22. PubMed ID: 2009846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ventilatory anaerobic threshold is related to, but is lower than, the critical power, but does not explain exercise tolerance at this workrate.
    Okudan N; Gökbel H
    J Sports Med Phys Fitness; 2006 Mar; 46(1):15-9. PubMed ID: 16596094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pedal cadence on parameters of the hyperbolic power-time relationship.
    Hill DW; Smith JC; Leuschel JL; Chasteen SD; Miller SA
    Int J Sports Med; 1995 Feb; 16(2):82-7. PubMed ID: 7751081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of phosphatidic acid supplementation on strength, body composition, muscular endurance, power, agility, and vertical jump in resistance trained men.
    Escalante G; Alencar M; Haddock B; Harvey P
    J Int Soc Sports Nutr; 2016; 13():24. PubMed ID: 27274715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of child-specific aerobic fitness and anaerobic capacity by the use of the power-time relationships constants.
    Leclair E; Borel B; Thevenet D; Baquet G; Mucci P; Berthoin S
    Pediatr Exerc Sci; 2010 Aug; 22(3):454-66. PubMed ID: 20814040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power.
    Johnson MA; Sharpe GR; Brown PI
    Eur J Appl Physiol; 2007 Dec; 101(6):761-70. PubMed ID: 17874123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of increased body mass and body composition on cycling anaerobic power.
    Maciejczyk M; Wiecek M; Szymura J; Szygula Z; Brown LE
    J Strength Cond Res; 2015 Jan; 29(1):58-65. PubMed ID: 25353079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative forms of the critical power test for ramp exercise.
    Morton RH
    Ergonomics; 1997 May; 40(5):511-4. PubMed ID: 9149552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of anaerobic capacity in adults with growth hormone deficiency.
    Chikani V; Cuneo RC; Hickman I; Ho KK
    J Clin Endocrinol Metab; 2015 May; 100(5):1811-8. PubMed ID: 25695894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3-parameter critical power model.
    Morton RH
    Ergonomics; 1996 Apr; 39(4):611-9. PubMed ID: 8854981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the "critical power".
    Chidnok W; Fulford J; Bailey SJ; Dimenna FJ; Skiba PF; Vanhatalo A; Jones AM
    J Appl Physiol (1985); 2013 Jul; 115(2):243-50. PubMed ID: 23640601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.