These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 28530574)
1. Sensory profile of ethyl β-d-glucopyranoside and its contribution to quality of sea buckthorn (Hippophaë rhamnoides L.). Ma X; Laaksonen O; Heinonen J; Sainio T; Kallio H; Yang B Food Chem; 2017 Oct; 233():263-272. PubMed ID: 28530574 [TBL] [Abstract][Full Text] [Related]
2. Role of Flavonols and Proanthocyanidins in the Sensory Quality of Sea Buckthorn (Hippophaë rhamnoides L.) Berries. Ma X; Yang W; Laaksonen O; Nylander M; Kallio H; Yang B J Agric Food Chem; 2017 Nov; 65(45):9871-9879. PubMed ID: 29035528 [TBL] [Abstract][Full Text] [Related]
3. Quality components of sea buckthorn (Hippophae rhamnoides) varieties. Tiitinen KM; Hakala MA; Kallio HP J Agric Food Chem; 2005 Mar; 53(5):1692-9. PubMed ID: 15740060 [TBL] [Abstract][Full Text] [Related]
4. Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophaë rhamnoides L.) varieties. Tiitinen KM; Yang B; Haraldsson GG; Jonsdottir S; Kallio HP J Agric Food Chem; 2006 Apr; 54(7):2508-13. PubMed ID: 16569036 [TBL] [Abstract][Full Text] [Related]
5. ¹H NMR spectroscopy reveals the effect of genotype and growth conditions on composition of sea buckthorn (Hippophaë rhamnoides L.) berries. Kortesniemi M; Sinkkonen J; Yang B; Kallio H Food Chem; 2014 Mar; 147():138-46. PubMed ID: 24206697 [TBL] [Abstract][Full Text] [Related]
6. Effects of genotype, latitude, and weather conditions on the composition of sugars, sugar alcohols, fruit acids, and ascorbic acid in sea buckthorn (Hippophaë rhamnoides ssp. mongolica) berry juice. Zheng J; Yang B; Trépanier M; Kallio H J Agric Food Chem; 2012 Mar; 60(12):3180-9. PubMed ID: 22397621 [TBL] [Abstract][Full Text] [Related]
7. Nutritional assessment of processing effects on major and trace element content in sea buckthorn juice (Hippophaë rhamnoides L. ssp. rhamnoides). Gutzeit D; Winterhalter P; Jerz G J Food Sci; 2008 Aug; 73(6):H97-102. PubMed ID: 19241584 [TBL] [Abstract][Full Text] [Related]
8. Untargeted metabolic fingerprinting reveals impact of growth stage and location on composition of sea buckthorn (Hippophaë rhamnoides) leaves. Pariyani R; Kortesniemi M; Liimatainen J; Sinkkonen J; Yang B J Food Sci; 2020 Feb; 85(2):364-373. PubMed ID: 31976552 [TBL] [Abstract][Full Text] [Related]
9. Vitamin C content in sea buckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products: a kinetic study on storage stability and the determination of processing effects. Gutzeit D; Baleanu G; Winterhalter P; Jerz G J Food Sci; 2008 Nov; 73(9):C615-20. PubMed ID: 19021790 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Tkacz K; Chmielewska J; Turkiewicz IP; Nowicka P; Wojdyło A Food Chem; 2020 Dec; 332():127382. PubMed ID: 32619943 [TBL] [Abstract][Full Text] [Related]
11. Determination of processing effects and of storage stability on vitamin K1 (Phylloquinone) in Sea Buckthorn Berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products. Gutzeit D; Baleanu G; Winterhalter P; Jerz G J Food Sci; 2007 Nov; 72(9):C491-7. PubMed ID: 18034709 [TBL] [Abstract][Full Text] [Related]
12. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Ciesarová Z; Murkovic M; Cejpek K; Kreps F; Tobolková B; Koplík R; Belajová E; Kukurová K; Daško Ľ; Panovská Z; Revenco D; Burčová Z Food Res Int; 2020 Jul; 133():109170. PubMed ID: 32466930 [TBL] [Abstract][Full Text] [Related]
13. NMR metabolomics demonstrates phenotypic plasticity of sea buckthorn (Hippophaë rhamnoides) berries with respect to growth conditions in Finland and Canada. Kortesniemi M; Sinkkonen J; Yang B; Kallio H Food Chem; 2017 Mar; 219():139-147. PubMed ID: 27765210 [TBL] [Abstract][Full Text] [Related]
14. In-tube extraction and GC-MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica) berry varieties and juice. Socaci SA; Socaciu C; Tofană M; Raţi IV; Pintea A Phytochem Anal; 2013; 24(4):319-28. PubMed ID: 23319448 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of Defatted Juice from Sea-Buckthorn Berries ( Belcar J; Gorzelany J Molecules; 2022 Jun; 27(12):. PubMed ID: 35745039 [TBL] [Abstract][Full Text] [Related]
16. Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) Berries of Pakistani origin. Sabir SM; Maqsood H; Hayat I; Khan MQ; Khaliq A J Med Food; 2005; 8(4):518-22. PubMed ID: 16379565 [TBL] [Abstract][Full Text] [Related]
17. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Ma X; Laaksonen O; Zheng J; Yang W; Trépanier M; Kallio H; Yang B Food Chem; 2016 Jun; 200():189-98. PubMed ID: 26830578 [TBL] [Abstract][Full Text] [Related]
18. Folate content in sea buckthorn berries and related products (Hippophaë rhamnoides L. ssp. rhamnoides): LC-MS/MS determination of folate vitamer stability influenced by processing and storage assessed by stable isotope dilution assay. Gutzeit D; Mönch S; Jerz G; Winterhalter P; Rychlik M Anal Bioanal Chem; 2008 May; 391(1):211-9. PubMed ID: 18278485 [TBL] [Abstract][Full Text] [Related]
19. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Guo R; Guo X; Li T; Fu X; Liu RH Food Chem; 2017 Apr; 221():997-1003. PubMed ID: 27979305 [TBL] [Abstract][Full Text] [Related]
20. Secoisolariciresinol and matairesinol of sea buckthorn (Hippophaë rhamnoides L.) berries of different subspecies and harvesting times. Yang B; Linko AM; Adlercreutz H; Kallio H J Agric Food Chem; 2006 Oct; 54(21):8065-70. PubMed ID: 17032010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]