These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 28530582)
21. Rapid and direct volatile compound profiling of black and green teas (Camellia sinensis) from different countries with PTR-ToF-MS. Yener S; Sánchez-López JA; Granitto PM; Cappellin L; Märk TD; Zimmermann R; Bonn GK; Yeretzian C; Biasioli F Talanta; 2016 May; 152():45-53. PubMed ID: 26992494 [TBL] [Abstract][Full Text] [Related]
22. Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey. Ballabio D; Robotti E; Grisoni F; Quasso F; Bobba M; Vercelli S; Gosetti F; Calabrese G; Sangiorgi E; Orlandi M; Marengo E Food Chem; 2018 Nov; 266():79-89. PubMed ID: 30381229 [TBL] [Abstract][Full Text] [Related]
23. Differential mobility spectrometry coupled to mass spectrometry (DMS-MS) for the classification of Spanish PDO paprika. Campmajó G; Saurina J; Núñez O; Sentellas S Food Chem; 2022 Oct; 390():133141. PubMed ID: 35567973 [TBL] [Abstract][Full Text] [Related]
24. Class-modeling approach to PTR-TOFMS data: a peppers case study. Taiti C; Costa C; Menesatti P; Comparini D; Bazihizina N; Azzarello E; Masi E; Mancuso S J Sci Food Agric; 2015 Jun; 95(8):1757-63. PubMed ID: 24871623 [TBL] [Abstract][Full Text] [Related]
25. Geographical provenancing of purple grape juices from different farming systems by proton transfer reaction mass spectrometry using supervised statistical techniques. Granato D; Koot A; van Ruth SM J Sci Food Agric; 2015 Oct; 95(13):2668-77. PubMed ID: 25400259 [TBL] [Abstract][Full Text] [Related]
26. Portraying and tracing the impact of different production systems on the volatile organic compound composition of milk by PTR-(Quad)MS and PTR-(ToF)MS. Liu N; Koot A; Hettinga K; de Jong J; van Ruth SM Food Chem; 2018 Jan; 239():201-207. PubMed ID: 28873560 [TBL] [Abstract][Full Text] [Related]
27. Coupling proton transfer reaction-mass spectrometry with linear discriminant analysis: a case study. Biasioli F; Gasperi F; Aprea E; Mott D; Boscaini E; Mayr D; Märk TD J Agric Food Chem; 2003 Dec; 51(25):7227-33. PubMed ID: 14640562 [TBL] [Abstract][Full Text] [Related]
28. Partial least-squares-discriminant analysis differentiating Chinese wolfberries by UPLC-MS and flow injection mass spectrometric (FIMS) fingerprints. Lu W; Jiang Q; Shi H; Niu Y; Gao B; Yu LL J Agric Food Chem; 2014 Sep; 62(37):9073-80. PubMed ID: 25152955 [TBL] [Abstract][Full Text] [Related]
29. Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS). Del Pulgar JS; Soukoulis C; Biasioli F; Cappellin L; García C; Gasperi F; Granitto P; Märk TD; Piasentier E; Schuhfried E Talanta; 2011 Jul; 85(1):386-93. PubMed ID: 21645714 [TBL] [Abstract][Full Text] [Related]
30. Authentication of geographical origin of palm oil by chromatographic fingerprinting of triacylglycerols and partial least square-discriminant analysis. Ruiz-Samblás C; Arrebola-Pascual C; Tres A; van Ruth S; Cuadros-Rodríguez L Talanta; 2013 Nov; 116():788-93. PubMed ID: 24148475 [TBL] [Abstract][Full Text] [Related]
31. Multi-element (H,C,N,S) stable isotope characteristics of lamb meat from different European regions. Camin F; Bontempo L; Heinrich K; Horacek M; Kelly SD; Schlicht C; Thomas F; Monahan FJ; Hoogewerff J; Rossmann A Anal Bioanal Chem; 2007 Sep; 389(1):309-20. PubMed ID: 17492274 [TBL] [Abstract][Full Text] [Related]
32. Implementation of chemometrics for quality control and authentication of meat and meat products. Arvanitoyannis IS; van Houwelingen-Koukaliaroglou M Crit Rev Food Sci Nutr; 2003; 43(2):173-218. PubMed ID: 12705641 [TBL] [Abstract][Full Text] [Related]
33. Atmospheric pressure chemical ionisation mass spectrometry analysis linked with chemometrics for food classification - a case study: geographical provenance and cultivar classification of monovarietal clarified apple juices. Gan HH; Soukoulis C; Fisk I Food Chem; 2014 Mar; 146():149-56. PubMed ID: 24176326 [TBL] [Abstract][Full Text] [Related]
34. Clustering and diagnostic modelling of slimming aids based on chromatographic and mass spectrometric fingerprints. Custers D; Van Hoeck E; Courselle P; Apers S; Deconinck E Drug Test Anal; 2017 Feb; 9(2):230-242. PubMed ID: 27006262 [TBL] [Abstract][Full Text] [Related]
35. Origin assignment by multi-element stable isotopes of lamb tissues. Sun S; Guo B; Wei Y Food Chem; 2016 Dec; 213():675-681. PubMed ID: 27451234 [TBL] [Abstract][Full Text] [Related]
36. Feeding encapsulated ground full-fat soybeans to increase polyunsaturated fat concentrations and effects on flavor volatiles in fresh lamb. Lee JH; Waller JC; Melton SL; Saxton AM; Pordesimo LO J Anim Sci; 2004 Sep; 82(9):2734-41. PubMed ID: 15446490 [TBL] [Abstract][Full Text] [Related]
37. Intramuscular fat in lamb muscle and the impact of selection for improved carcass lean meat yield. Anderson F; Pannier L; Pethick DW; Gardner GE Animal; 2015 Jun; 9(6):1081-90. PubMed ID: 25510326 [TBL] [Abstract][Full Text] [Related]
38. Authentication of the Geographical Origin of Margarines and Fat-Spread Products from Liquid Chromatographic UV-Absorption Fingerprints and Chemometrics. Bikrani S; Jiménez-Carvelo AM; Nechar M; Bagur-González MG; Souhail B; Cuadros-Rodríguez L Foods; 2019 Nov; 8(11):. PubMed ID: 31752349 [TBL] [Abstract][Full Text] [Related]
39. Use of dietary rosemary diterpenes to inhibit rancid volatiles in lamb meat packed under protective atmosphere. Ortuño J; Serrano R; Bañón S Animal; 2016 Aug; 10(8):1391-401. PubMed ID: 26940773 [TBL] [Abstract][Full Text] [Related]
40. A model explaining and predicting lamb flavour from the aroma-active chemical compounds released upon grilling light lamb loins. Bueno M; Campo MM; Cacho J; Ferreira V; Escudero A Meat Sci; 2014 Dec; 98(4):622-8. PubMed ID: 25089786 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]