These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2853070)

  • 21. Opiate receptor mediation of ketamine analgesia.
    Finck AD; Ngai SH
    Anesthesiology; 1982 Apr; 56(4):291-7. PubMed ID: 6278991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 6beta-[N,N-Bis(2-chloroethyl)amino]-17-(cyclopropylmethyl)-4,5alpha-epoxy-3,14-dihydroxymorphinan(chlornaltrexamine) a potent opioid receptor alkylating agent with ultralong narcotic antagonist actitivty.
    Portoghese PS; Larson DL; Jiang JB; Takemori AE; Caruso TP
    J Med Chem; 1978 Jul; 21(7):598-9. PubMed ID: 209185
    [No Abstract]   [Full Text] [Related]  

  • 23. Agonist-specific regulation of mu-opioid receptor desensitization and recovery from desensitization.
    Virk MS; Williams JT
    Mol Pharmacol; 2008 Apr; 73(4):1301-8. PubMed ID: 18198283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antagonism by chlornaltrexamine of some effects of delta 9-tetrahydrocannabinol in rats.
    Tulunay FC; Ayhan IH; Portoghese PS; Takemori AE
    Eur J Pharmacol; 1981 Mar; 70(2):219-24. PubMed ID: 6266844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beta-endorphin-(1-27) is a naturally occurring antagonist to etorphine-induced analgesia.
    Nicolas P; Li CH
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3178-81. PubMed ID: 2987913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Autoradiographic study of irreversible binding of [3H]beta-funaltrexamine to opioid receptors in the rat forebrain: comparison with mu and delta receptor distribution.
    Liu-Chen LY; Li SX; Lewis ME
    Brain Res; 1991 Mar; 544(2):235-42. PubMed ID: 1645609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methocinnamox is a potent, long-lasting, and selective antagonist of morphine-mediated antinociception in the mouse: comparison with clocinnamox, beta-funaltrexamine, and beta-chlornaltrexamine.
    Broadbear JH; Sumpter TL; Burke TF; Husbands SM; Lewis JW; Woods JH; Traynor JR
    J Pharmacol Exp Ther; 2000 Sep; 294(3):933-40. PubMed ID: 10945843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and biological activity of analogues of beta-chlornaltrexamine and beta-funaltrexamine at opioid receptors.
    Portoghese PS; Rein MD; Takemori AE
    J Med Chem; 1986 Oct; 29(10):1861-4. PubMed ID: 3020245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antitussive effect of dihydroetorphine in mice.
    Kamei J; Iwamoto Y; Suzuki T; Misawa M; Nagase H; Kasuya Y
    Eur J Pharmacol; 1994 Aug; 260(2-3):257-9. PubMed ID: 7988653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of receptor mechanism mediating fentanyl analgesia and toxicity.
    Jang Y; Yoburn BC
    Eur J Pharmacol; 1991 May; 197(2-3):135-41. PubMed ID: 1655470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Binding of [3H] dihydroetorphine to opioid receptors in rat brain membrane].
    Wang DX; Qin BY
    Zhongguo Yao Li Xue Bao; 1996 May; 17(3):281-3. PubMed ID: 9812759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterogeneity of opioid receptor binding in brain slices.
    Barchfeld-Rothschild CC; Medzihradsky F
    J Neurosci Res; 1987; 18(2):358-65. PubMed ID: 2891857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [3H]Etorphine receptor binding in vivo. Small fractional occupancy elicits analgesia.
    Perry DC; Rosenbaum JS; Kurowski M; Sadée W
    Mol Pharmacol; 1982 Mar; 21(2):272-9. PubMed ID: 6285166
    [No Abstract]   [Full Text] [Related]  

  • 34. Cold-restraint stress reduces [3H]etorphine binding to rat brain membranes: influence of acute and chronic morphine and naloxone.
    Hnatowich MR; Labella FS; Kiernan K; Glavin GB
    Brain Res; 1986 Aug; 380(1):107-13. PubMed ID: 3019462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Psychotomimetic opioid binding: specific binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain.
    Su TP
    Eur J Pharmacol; 1981 Oct; 75(1):81-2. PubMed ID: 6274661
    [No Abstract]   [Full Text] [Related]  

  • 36. Opiate receptor subtypes in the rat hypothalamus and neurointermediate lobe.
    Stojilković SS; Dufau ML; Catt KJ
    Endocrinology; 1987 Jul; 121(1):384-94. PubMed ID: 3036471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low doses of cyclic AMP-phosphodiesterase inhibitors rapidly evoke opioid receptor-mediated thermal hyperalgesia in naïve mice which is converted to prominent analgesia by cotreatment with ultra-low-dose naltrexone.
    Crain SM; Shen KF
    Brain Res; 2008 Sep; 1231():16-24. PubMed ID: 18656459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between behavioral and nociceptive changes in attacked mice: effects of opiate antagonists.
    Frischknecht HR; Siegfried B
    Psychopharmacology (Berl); 1989; 97(2):160-2. PubMed ID: 2498922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Opioid receptors are coupled tightly to G proteins but loosely to adenylate cyclase in NG108-15 cell membranes.
    Costa T; Klinz FJ; Vachon L; Herz A
    Mol Pharmacol; 1988 Dec; 34(6):744-54. PubMed ID: 2849042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solubilization and preliminary characterization of mu and kappa opiate receptor subtypes from rat brain.
    Chow T; Zukin RS
    Mol Pharmacol; 1983 Sep; 24(2):203-12. PubMed ID: 6310362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.