These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 28530708)

  • 1. Engineering RGB color vision into Escherichia coli.
    Fernandez-Rodriguez J; Moser F; Song M; Voigt CA
    Nat Chem Biol; 2017 Jul; 13(7):706-708. PubMed ID: 28530708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulated Expression of sgRNAs Tunes CRISPRi in E. coli.
    Fontana J; Dong C; Ham JY; Zalatan JG; Carothers JM
    Biotechnol J; 2018 Sep; 13(9):e1800069. PubMed ID: 29635744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a CRISPR Interference System To Repress a Class 1 Integron in Escherichia coli.
    Li Q; Zhao P; Li L; Zhao H; Shi L; Tian P
    Antimicrob Agents Chemother; 2020 Feb; 64(3):. PubMed ID: 31871091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPRi-mediated tunable control of gene expression level with engineered single-guide RNA in Escherichia coli.
    Byun G; Yang J; Seo SW
    Nucleic Acids Res; 2023 May; 51(9):4650-4659. PubMed ID: 36999618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system.
    Chang Y; Su T; Qi Q; Liang Q
    Microb Cell Fact; 2016 Nov; 15(1):195. PubMed ID: 27842593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OptoCRISPRi-HD: Engineering a Bacterial Green-Light-Activated CRISPRi System with a High Dynamic Range.
    Chen KN; Ma BG
    ACS Synth Biol; 2023 Jun; 12(6):1708-1715. PubMed ID: 37217315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli.
    Sung LY; Wu MY; Lin MW; Hsu MN; Truong VA; Shen CC; Tu Y; Hwang KY; Tu AP; Chang YH; Hu YC
    Biotechnol Bioeng; 2019 May; 116(5):1066-1079. PubMed ID: 30636321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9.
    Cui L; Vigouroux A; Rousset F; Varet H; Khanna V; Bikard D
    Nat Commun; 2018 May; 9(1):1912. PubMed ID: 29765036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling.
    Fontana J; Sparkman-Yager D; Faulkner I; Cardiff R; Kiattisewee C; Walls A; Primo TG; Kinnunen PC; Garcia Martin H; Zalatan JG; Carothers JM
    Nat Commun; 2024 Jul; 15(1):6341. PubMed ID: 39068154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic biology: engineering Escherichia coli to see light.
    Levskaya A; Chevalier AA; Tabor JJ; Simpson ZB; Lavery LA; Levy M; Davidson EA; Scouras A; Ellington AD; Marcotte EM; Voigt CA
    Nature; 2005 Nov; 438(7067):441-2. PubMed ID: 16306980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli.
    Hashemi A
    World J Microbiol Biotechnol; 2020 Jun; 36(7):96. PubMed ID: 32583135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems.
    Tickman BI; Burbano DA; Chavali VP; Kiattisewee C; Fontana J; Khakimzhan A; Noireaux V; Zalatan JG; Carothers JM
    Cell Syst; 2022 Mar; 13(3):215-229.e8. PubMed ID: 34800362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.
    Pickar-Oliver A; Black JB; Lewis MM; Mutchnick KJ; Klann TS; Gilcrest KA; Sitton MJ; Nelson CE; Barrera A; Bartelt LC; Reddy TE; Beisel CL; Barrangou R; Gersbach CA
    Nat Biotechnol; 2019 Dec; 37(12):1493-1501. PubMed ID: 31548729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction.
    Fontana J; Voje WE; Zalatan JG; Carothers JM
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):481-490. PubMed ID: 29740742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gene Circuit Combining the Endogenous I-E Type CRISPR-Cas System and a Light Sensor to Produce Poly-β-Hydroxybutyric Acid Efficiently.
    Li X; Jiang W; Qi Q; Liang Q
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.