These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28530718)

  • 1. Resonant thermoelectric nanophotonics.
    Mauser KW; Kim S; Mitrovic S; Fleischman D; Pala R; Schwab KC; Atwater HA
    Nat Nanotechnol; 2017 Aug; 12(8):770-775. PubMed ID: 28530718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors.
    Ahmadivand A; Gerislioglu B; Ramezani Z
    Nanoscale; 2019 Jul; 11(27):13108-13116. PubMed ID: 31268076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GeSn resonant-cavity-enhanced photodetectors for efficient photodetection at the 2  µm wavelength band.
    Tsai CH; Huang BJ; Soref RA; Sun G; Cheng HH; Chang GE
    Opt Lett; 2020 Mar; 45(6):1463-1466. PubMed ID: 32163992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room temperature GaAsSb single nanowire infrared photodetectors.
    Li Z; Yuan X; Fu L; Peng K; Wang F; Fu X; Caroff P; White TP; Hoe Tan H; Jagadish C
    Nanotechnology; 2015 Nov; 26(44):445202. PubMed ID: 26451616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metasurface Enabled Photothermoelectric Photoresponse of Semimetal Cd
    Xue Z; Fan Z; Liao X; Li Y; Qin Y; Zhang G; Song X; Liao ZM; Sun D; Lu G; Gong Q
    Nano Lett; 2022 Nov; 22(21):8728-8734. PubMed ID: 36314894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast pyroelectric photodetection with on-chip spectral filters.
    Stewart JW; Vella JH; Li W; Fan S; Mikkelsen MH
    Nat Mater; 2020 Feb; 19(2):158-162. PubMed ID: 31768011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper antimony sulfide thin films for visible to near infrared photodetector applications.
    Vinayakumar V; Shaji S; Avellaneda D; Aguilar-Martínez JA; Krishnan B
    RSC Adv; 2018 Aug; 8(54):31055-31065. PubMed ID: 35548774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection.
    Yu X; Li Y; Hu X; Zhang D; Tao Y; Liu Z; He Y; Haque MA; Liu Z; Wu T; Wang QJ
    Nat Commun; 2018 Oct; 9(1):4299. PubMed ID: 30327474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films.
    Liu Y; Yin J; Wang P; Hu Q; Wang Y; Xie Y; Zhao Z; Dong Z; Zhu JL; Chu W; Yang N; Wei J; Ma W; Sun JL
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36304-36311. PubMed ID: 30264557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector.
    Pan Y; Tagliabue G; Eghlidi H; Höller C; Dröscher S; Hong G; Poulikakos D
    Sci Rep; 2016 Nov; 6():37564. PubMed ID: 27874075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Hot Electron Induced Photocurrent Response at MoS2-Metal Junctions.
    Hong T; Chamlagain B; Hu S; Weiss SM; Zhou Z; Xu YQ
    ACS Nano; 2015 May; 9(5):5357-63. PubMed ID: 25871507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films.
    Kocer H; Butun S; Palacios E; Liu Z; Tongay S; Fu D; Wang K; Wu J; Aydin K
    Sci Rep; 2015 Aug; 5():13384. PubMed ID: 26294085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress of Photodetectors Based on the Photothermoelectric Effect.
    Lu X; Sun L; Jiang P; Bao X
    Adv Mater; 2019 Dec; 31(50):e1902044. PubMed ID: 31483546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planar microcavity-integrated hot-electron photodetector.
    Zhang C; Wu K; Zhan Y; Giannini V; Li X
    Nanoscale; 2016 May; 8(19):10323-9. PubMed ID: 27128730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device.
    Sobhani A; Knight MW; Wang Y; Zheng B; King NS; Brown LV; Fang Z; Nordlander P; Halas NJ
    Nat Commun; 2013; 4():1643. PubMed ID: 23535664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-compact silicon waveguide-integrated Schottky photodetectors using perfect absorption from tapered metal nanobrick arrays.
    Kwon H; You JB; Jin Y; Yu K
    Opt Express; 2019 Jun; 27(12):16413-16424. PubMed ID: 31252867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple Unbiased Hot-Electron Polarization-Sensitive Near-Infrared Photodetector.
    Mirzaee SMA; Lebel O; Nunzi JM
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11862-11871. PubMed ID: 29508603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Metal Photodetectors Using Plasmonically-Active Asymmetric Gold Nanostructures.
    Abbasi M; Evans CI; Chen L; Natelson D
    ACS Nano; 2020 Dec; 14(12):17535-17542. PubMed ID: 33270432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon-enhanced photothermoelectric effect in SrTiO
    Lu X; Jiang P; Bao X
    Nat Commun; 2019 Jan; 10(1):138. PubMed ID: 30635562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Thermoelectric Performance of n-Type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects.
    Zhai R; Hu L; Wu H; Xu Z; Zhu TJ; Zhao XB
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28577-28585. PubMed ID: 28776374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.