BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28531354)

  • 1. Monomeric Polyglutamine Structures That Evolve into Fibrils.
    Punihaole D; Jakubek RS; Workman RJ; Marbella LE; Campbell P; Madura JD; Asher SA
    J Phys Chem B; 2017 Jun; 121(24):5953-5967. PubMed ID: 28531354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyglutamine Fibrils: New Insights into Antiparallel β-Sheet Conformational Preference and Side Chain Structure.
    Punihaole D; Workman RJ; Hong Z; Madura JD; Asher SA
    J Phys Chem B; 2016 Mar; 120(12):3012-26. PubMed ID: 26947327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV resonance Raman spectroscopy monitors polyglutamine backbone and side chain hydrogen bonding and fibrillization.
    Xiong K; Punihaole D; Asher SA
    Biochemistry; 2012 Jul; 51(29):5822-30. PubMed ID: 22746095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyglutamine Solution-State Structural Propensity Is Repeat Length Dependent.
    Jakubek RS; Workman RJ; White SE; Asher SA
    J Phys Chem B; 2019 May; 123(19):4193-4203. PubMed ID: 31008597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV Resonance Raman Structural Characterization of an (In)soluble Polyglutamine Peptide.
    Jakubek RS; White SE; Asher SA
    J Phys Chem B; 2019 Feb; 123(8):1749-1763. PubMed ID: 30717595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations.
    Nakano M; Ebina K; Tanaka S
    J Mol Model; 2013 Apr; 19(4):1627-39. PubMed ID: 23288093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative characterization of short monomeric polyglutamine peptides by replica exchange molecular dynamics simulation.
    Nakano M; Watanabe H; Rothstein SM; Tanaka S
    J Phys Chem B; 2010 May; 114(20):7056-61. PubMed ID: 20441177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is polyproline II helix the killer conformation? A Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme.
    Blanch EW; Morozova-Roche LA; Cochran DA; Doig AJ; Hecht L; Barron LD
    J Mol Biol; 2000 Aug; 301(2):553-63. PubMed ID: 10926527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediacy of poly(L-proline) II and beta-strand conformations in poly(L-lysine) beta-sheet formation probed by temperature-jump/UV resonance Raman spectroscopy.
    JiJi RD; Balakrishnan G; Hu Y; Spiro TG
    Biochemistry; 2006 Jan; 45(1):34-41. PubMed ID: 16388578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction Enthalpy of Side Chain and Backbone Amides in Polyglutamine Solution Monomers and Fibrils.
    Punihaole D; Jakubek RS; Workman RJ; Asher SA
    J Phys Chem Lett; 2018 Apr; 9(8):1944-1950. PubMed ID: 29570305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flanking polyproline sequences inhibit beta-sheet structure in polyglutamine segments by inducing PPII-like helix structure.
    Darnell G; Orgel JP; Pahl R; Meredith SC
    J Mol Biol; 2007 Nov; 374(3):688-704. PubMed ID: 17945257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backbone Engineering within a Latent β-Hairpin Structure to Design Inhibitors of Polyglutamine Amyloid Formation.
    Kar K; Baker MA; Lengyel GA; Hoop CL; Kodali R; Byeon IJ; Horne WS; van der Wel PC; Wetzel R
    J Mol Biol; 2017 Jan; 429(2):308-323. PubMed ID: 27986569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A toxic monomeric conformer of the polyglutamine protein.
    Nagai Y; Inui T; Popiel HA; Fujikake N; Hasegawa K; Urade Y; Goto Y; Naiki H; Toda T
    Nat Struct Mol Biol; 2007 Apr; 14(4):332-40. PubMed ID: 17369839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV resonance raman investigation of electronic transitions in alpha-helical and polyproline II-like conformations.
    Sharma B; Bykov SV; Asher SA
    J Phys Chem B; 2008 Sep; 112(37):11762-9. PubMed ID: 18712913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils.
    Sikirzhytski V; Topilina NI; Higashiya S; Welch JT; Lednev IK
    J Am Chem Soc; 2008 May; 130(18):5852-3. PubMed ID: 18410104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices.
    Zanuy D; Gunasekaran K; Lesk AM; Nussinov R
    J Mol Biol; 2006 Apr; 358(1):330-45. PubMed ID: 16503338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model amyloid peptide B18 monomer and dimer studied by replica exchange molecular dynamics simulations.
    Knecht V
    J Phys Chem B; 2010 Oct; 114(39):12701-7. PubMed ID: 20839866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the protein context on the polyglutamine length-dependent elongation of amyloid fibrils.
    Huynen C; Willet N; Buell AK; Duwez AS; Jerôme C; Dumoulin M
    Biochim Biophys Acta; 2015 Mar; 1854(3):239-48. PubMed ID: 25489872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilic Peptides A6K and V6K Display Distinct Oligomeric Structures and Self-Assembly Dynamics: A Combined All-Atom and Coarse-Grained Simulation Study.
    Sun Y; Qian Z; Guo C; Wei G
    Biomacromolecules; 2015 Sep; 16(9):2940-9. PubMed ID: 26301845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.