BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28531978)

  • 1. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
    Gao LL; Wei CL; Zhang CQ; Gao H; Yang N; Dong LM
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1050-1059. PubMed ID: 28531978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth and rate dependent mechanical behaviors for articular cartilage: experiments and theoretical predictions.
    Gao LL; Zhang CQ; Gao H; Liu ZD; Xiao PP
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():244-51. PubMed ID: 24656375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratcheting behavior of articular cartilage under cyclic unconfined compression.
    Gao LL; Qin XY; Zhang CQ; Gao H; Ge HY; Zhang XZ
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():371-7. PubMed ID: 26354278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone.
    Manda K; Xie S; Wallace RJ; Levrero-Florencio F; Pankaj P
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1631-1640. PubMed ID: 27090522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive creep behavior of bovine trabecular bone.
    Bowman SM; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech; 1994 Mar; 27(3):301-10. PubMed ID: 8051190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creep contributes to the fatigue behavior of bovine trabecular bone.
    Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creep does not contribute to fatigue in bovine trabecular bone.
    Moore TL; O'Brien FJ; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):321-9. PubMed ID: 15341168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of a nonlinear μFE model based on cohesive-frictional plasticity for trabecular bone.
    Schwiedrzik J; Gross T; Bina M; Pretterklieber M; Zysset P; Pahr D
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02739. PubMed ID: 26224581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic properties of demineralized dentin matrix.
    Pashley DH; Agee KA; Wataha JC; Rueggeberg F; Ceballos L; Itou K; Yoshiyama M; Carvalho RM; Tay FR
    Dent Mater; 2003 Dec; 19(8):700-6. PubMed ID: 14511727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong similarities in the creep and damage behaviour of a synthetic bone model compared to human trabecular bone under compressive cyclic loading.
    Purcell P; Tiernan S; McEvoy F; Morris S
    J Mech Behav Biomed Mater; 2015 Aug; 48():51-59. PubMed ID: 25913608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic creep behavior of acrylic bone cement.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 1995 May; 29(5):575-81. PubMed ID: 7622542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phenomenological model for predicting fatigue life in bovine trabecular bone.
    Ganguly P; Moore TL; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):330-9. PubMed ID: 15341169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study of cancellous bone under large strains and a constitutive probabilistic model.
    Kefalas V; Eftaxiopoulos DA
    J Mech Behav Biomed Mater; 2012 Feb; 6():41-52. PubMed ID: 22301172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of long-term nonlinear stress relaxation of bovine trabecular bone.
    Gersie T; Bitter T; Wolfson D; Freeman R; Verdonschot N; Janssen D
    J Mech Behav Biomed Mater; 2024 Apr; 152():106434. PubMed ID: 38350383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of high-energy X-ray irradiation on creep mechanisms in bone and dentin.
    Deymier-Black AC; Singhal A; Yuan F; Almer JD; Brinson LC; Dunand DC
    J Mech Behav Biomed Mater; 2013 May; 21():17-31. PubMed ID: 23454365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of freeze-thaw and micro-computed tomography irradiation on structure-property relations of porcine trabecular bone.
    Lee W; Jasiuk I
    J Biomech; 2014 Apr; 47(6):1495-8. PubMed ID: 24612985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creep of trabecular bone from the human proximal tibia.
    Novitskaya E; Zin C; Chang N; Cory E; Chen P; D'Lima D; Sah RL; McKittrick J
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():219-27. PubMed ID: 24857486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.