BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28532017)

  • 1. Effects of pore orientation on in-vitro properties of retinoic acid-loaded PLGA/gelatin scaffolds for artificial peripheral nerve application.
    Ghorbani F; Zamanian A; Nojehdehian H
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():159-172. PubMed ID: 28532017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications.
    Ghorbani F; Nojehdehian H; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():208-20. PubMed ID: 27612706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.
    Mehrasa M; Asadollahi MA; Nasri-Nasrabadi B; Ghaedi K; Salehi H; Dolatshahi-Pirouz A; Arpanaei A
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():25-32. PubMed ID: 27207035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and surface characterization of poly-L-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: in vitro study.
    Nojehdehian H; Moztarzadeh F; Baharvand H; Nazarian H; Tahriri M
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):23-9. PubMed ID: 19520554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterisation of super-paramagnetic responsive PLGA-gelatine-magnetite scaffolds with the unidirectional porous structure: a physicochemical, mechanical, and
    Ghorbani F; Zamanian A; Shams A; Shamoosi A; Aidun A
    IET Nanobiotechnol; 2019 Oct; 13(8):860-867. PubMed ID: 31625528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bioinspired 3D shape olibanum-collagen-gelatin scaffolds with tunable porous microstructure for efficient neural tissue regeneration.
    Ghorbani F; Zamanian A; Kermanian F; Shamoosi A
    Biotechnol Prog; 2020 Jan; 36(1):e2918. PubMed ID: 31576679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelatin-poly(lactic-co-glycolic acid) scaffolds with oriented pore channel architecture - From in vitro to in vivo testing.
    Thiem A; Bagheri M; Große-Siestrup C; Zehbe R
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():585-95. PubMed ID: 26952462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of PLGA nanoparticles into porous chitosan-gelatin scaffolds: influence on the physical properties and cell behavior.
    Nandagiri VK; Gentile P; Chiono V; Tonda-Turo C; Matsiko A; Ramtoola Z; Montevecchi FM; Ciardelli G
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1318-27. PubMed ID: 21783141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pancreatic differentiation of induced pluripotent stem cells in activin A-grafted gelatin-poly(lactide-co-glycolide) nanoparticle scaffolds with induction of LY294002 and retinoic acid.
    Kuo YC; Liu YC; Rajesh R
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():384-393. PubMed ID: 28532044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods.
    Namini MS; Bayat N; Tajerian R; Ebrahimi-Barough S; Azami M; Irani S; Jangjoo S; Shirian S; Ai J
    J Orthop Surg Res; 2018 Mar; 13(1):63. PubMed ID: 29587806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen.
    Tang G; Zhang H; Zhao Y; Zhang Y; Li X; Yuan X
    J Biomater Sci Polym Ed; 2012; 23(17):2241-57. PubMed ID: 22137329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mussel-inspired polydopamine induced the osteoinductivity to ice-templating PLGA-gelatin matrix for bone tissue engineering application.
    Rezaei H; Shahrezaee M; Jalali Monfared M; Ghorbani F; Zamanian A; Sahebalzamani M
    Biotechnol Appl Biochem; 2021 Feb; 68(1):185-196. PubMed ID: 32248561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds.
    Zhao L; Wu C; Lin K; Chang J
    Biomed Mater Eng; 2012; 22(5):289-300. PubMed ID: 23023146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure.
    He F; Ye J
    J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of PLGA-gelatin complex as potential artificial nerve scaffold.
    Li XK; Cai SX; Liu B; Xu ZL; Dai XZ; Ma KW; Lin SQ; Yang L; Sung KL; Fu XB
    Colloids Surf B Biointerfaces; 2007 Jun; 57(2):198-203. PubMed ID: 17368867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering.
    Mehrasa M; Asadollahi MA; Ghaedi K; Salehi H; Arpanaei A
    Int J Biol Macromol; 2015 Aug; 79():687-95. PubMed ID: 26045092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering.
    Qi X; Ye J; Wang Y
    J Biomed Mater Res A; 2009 Jun; 89(4):980-7. PubMed ID: 18470921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-casting for PLGA/carbonated apatite composite scaffolds: Structure and properties.
    Schardosim M; Soulié J; Poquillon D; Cazalbou S; Duployer B; Tenailleau C; Rey C; Hübler R; Combes C
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():731-738. PubMed ID: 28532086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering.
    Tan H; Wu J; Lao L; Gao C
    Acta Biomater; 2009 Jan; 5(1):328-37. PubMed ID: 18723417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.