BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2853215)

  • 1. Photoexcitation of the methionine-iron bond in iron(III) cytochrome c: bimolecular reaction with NADH.
    Ferri A; Patti D; Chiozzi P; Cattozzo M; Bartocci C; Maldotti A
    J Photochem Photobiol B; 1988 Nov; 2(3):341-53. PubMed ID: 2853215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Reduction of cytochrome c by NADH induced by light].
    Ferri A; Bartocci C; Maldotti A; Carassiti V
    Boll Soc Ital Biol Sper; 1985 Mar; 61(3):327-34. PubMed ID: 2992542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immediate reduction of cytochrome c by photoexcited NADH: reaction mechanism as revealed by flow-flash and rapid-scan studies.
    Orii Y
    Biochemistry; 1993 Nov; 32(44):11910-4. PubMed ID: 8218263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometric studies on the oxidation of tetrahydropterin with ferri-cytochrome c.
    Hasegawa H; Nakanishi N; Akino M
    J Biochem; 1978 Sep; 84(3):499-506. PubMed ID: 214425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycoconjugated hypocrellin: photosensitized generation of free radicals (O2*-, *OH, and GHB*-) and singlet oxygen (1O2).
    Yuying H; Jingyi A; Lijin J
    Free Radic Biol Med; 1999 Jul; 27(1-2):203-12. PubMed ID: 10443937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron-transfer mechanisms in photosensitization by the anti-inflammatory drug benzydamine.
    Moore DE; Wang J
    J Photochem Photobiol B; 1998 Jun; 43(3):175-80. PubMed ID: 9718717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA cleavage by UVA irradiation of NADH with dioxygen via radical chain processes.
    Tanaka M; Ohkubo K; Fukuzumi S
    J Phys Chem A; 2006 Sep; 110(38):11214-8. PubMed ID: 16986858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of nicotinamide coenzyme dimers by one-electron-accepting proteins.
    Avigliano L; Carelli V; Casini A; Finazzi-Agrò A; Liberatore F; Rossi A
    Biochem J; 1986 Aug; 237(3):919-22. PubMed ID: 3026335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of production of superoxide radical by reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium.
    Picker SD; Fridovich I
    Arch Biochem Biophys; 1984 Jan; 228(1):155-8. PubMed ID: 6320732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Argyrou A; Blanchard JS; Palfey BA
    Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement of a diperoxovanadate-derived intermediate for the interdependent oxidation of vanadyl and NADH.
    Ravishankar HN; Ramasarma T
    Arch Biochem Biophys; 1995 Jan; 316(1):319-26. PubMed ID: 7840632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanism of NADH-sensitized formation of DNA breaks during irradiation with near UV light].
    Burchuladze TG; Fraĭkin GIa
    Mol Biol (Mosk); 1991; 25(4):955-9. PubMed ID: 1795709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Role of complex formation between cytochrome c and NADH in the display of dinucleotide photosensitizing effect with respect to hemeprotein].
    Artiukhov VG
    Ukr Biokhim Zh (1978); 1993; 65(3):23-9. PubMed ID: 8291136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A peroxide-dependent reduction of cytochrome c by NADH.
    Misra HP; Fridovich I
    Biochim Biophys Acta; 1973 Apr; 292(3):815-24. PubMed ID: 4350261
    [No Abstract]   [Full Text] [Related]  

  • 16. Production of reactive oxygen-derived species by redox reactions between Fe(II)cytochrome c and oxygen. A kinetic study.
    Ferri A; Calza R
    Biochem Mol Biol Int; 1995 Apr; 35(4):691-7. PubMed ID: 7627118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions.
    Fukuzumi S; Kotani H; Lee YM; Nam W
    J Am Chem Soc; 2008 Nov; 130(45):15134-42. PubMed ID: 18937476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction of phthalate dioxygenase reductase with NADH and NAD: kinetic and spectral characterization of intermediates.
    Gassner G; Wang L; Batie C; Ballou DP
    Biochemistry; 1994 Oct; 33(40):12184-93. PubMed ID: 7522555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New photoproducts from irradiation of NADH with near-UV light.
    Vitinius U; Schaffner K; Demuth M; Heibel M; Selbach H
    Chem Biodivers; 2004 Oct; 1(10):1487-97. PubMed ID: 17191792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mimicking biological electron transport in sol-gel glass: photoinduced electron transfer from zinc cytochrome C to plastocyanin or cytochrome C mediated by mobile inorganic complexes.
    Pletneva EV; Crnogorac MM; Kostić NM
    J Am Chem Soc; 2002 Dec; 124(48):14342-54. PubMed ID: 12452708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.