These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 28532320)

  • 41. Comparative assessment of feeding damage by pod-sucking bugs (Heteroptera: Coreoidea) associated with cowpea, Vigna unguiculata ssp. unguiculata in Nigeria.
    Soyelu OL; Akingbohungbe AE
    Bull Entomol Res; 2007 Feb; 97(1):1-7. PubMed ID: 17298676
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Seed coat metabolite profiling of cowpea (
    Tsamo AT; Mohammed H; Mohammed M; Papoh Ndibewu P; Dapare Dakora F
    Nat Prod Res; 2020 Apr; 34(8):1158-1162. PubMed ID: 30663354
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean (
    Perchuk I; Shelenga T; Gurkina M; Miroshnichenko E; Burlyaeva M
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32825166
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp).
    Nsa IY; Kareem KT
    Front Plant Sci; 2015; 6():812. PubMed ID: 26483824
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cowpea Immature Pods and Grains Evaluation: An Opportunity for Different Food Sources.
    Carvalho M; Carnide V; Sobreira C; Castro I; Coutinho J; Barros A; Rosa E
    Plants (Basel); 2022 Aug; 11(16):. PubMed ID: 36015383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro plant regeneration via organogenesis of cowpea [Vigna unguiculata (L.) Walp.].
    Pellegrineschi A
    Plant Cell Rep; 1997 Dec; 17(2):89-95. PubMed ID: 30732409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species.
    Gupta SK; Gopalakrishna T
    Genome; 2010 Jul; 53(7):508-23. PubMed ID: 20616873
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phytochemical analysis by GC-MS, LC-MS complementary approaches and antimicrobial activity investigation of
    Dinore JM; Patil HS; Dobhal BS; Farooqui M
    Nat Prod Res; 2022 Nov; 36(21):5631-5637. PubMed ID: 34915795
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ethnobotanical study of cowpea (Vigna unguiculata (L.) Walp.) in Senegal.
    Sarr A; Bodian A; Gueye MC; Gueye B; Kanfany G; Diatta C; Bougma LA; Diop EAMC; Cissé N; Diouf D; Leclerc C
    J Ethnobiol Ethnomed; 2022 Feb; 18(1):6. PubMed ID: 35123533
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New artificial diet for continuous rearing of the bean pod borer, Maruca vitrata.
    Wang P; Lu PF; Zheng XL; Chen LZ; Lei CL; Wang XP
    J Insect Sci; 2013; 13():121. PubMed ID: 24785903
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Light and Shade Effects on Abscission and C-Photoassimilate Partitioning among Reproductive Structures in Soybean.
    Heindl JC; Brun WA
    Plant Physiol; 1983 Oct; 73(2):434-9. PubMed ID: 16663234
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of pO(2) on the Formation and Status of Leghemoglobin in Nodules of Cowpea and Soybean.
    Dakora FD; Appleby CA; Atkins CA
    Plant Physiol; 1991 Mar; 95(3):723-30. PubMed ID: 16668046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Morphological traits association with fodder and seed yield in Vigna unguiculata (L.).
    Sahai G; Malaviya DR; Singh UP
    J Environ Biol; 2013 Jan; 34(1):139-45. PubMed ID: 24006821
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using artificial neural networks to select upright cowpea (Vigna unguiculata) genotypes with high productivity and phenotypic stability.
    Barroso LM; Teodoro PE; Nascimento M; Torres FE; Nascimento AC; Azevedo CF; Teixeira FR
    Genet Mol Res; 2016 Nov; 15(4):. PubMed ID: 27820651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: nutritional advantages and constraints.
    Gonçalves A; Goufo P; Barros A; Domínguez-Perles R; Trindade H; Rosa EA; Ferreira L; Rodrigues M
    J Sci Food Agric; 2016 Jul; 96(9):2941-51. PubMed ID: 26804459
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of selenium spatial distribution using μ-XFR in cowpea (Vigna unguiculata (L.) Walp.) plants: Integration of physiological and biochemical responses.
    Lanza MGDB; Silva VM; Montanha GS; Lavres J; Pereira de Carvalho HW; Reis ARD
    Ecotoxicol Environ Saf; 2021 Jan; 207():111216. PubMed ID: 32916525
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical emasculation in cowpea (Vigna unguiculata (L.) Walp.) and dicotyledonous model species using trifluoromethanesulfonamide (TFMSA).
    Sekiguchi Y; Ubi BE; Ishii T
    Plant Reprod; 2023 Sep; 36(3):273-284. PubMed ID: 37227496
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Favoreto L; Bueno R; Calandrelli A; França PP; Meyer MC; Machado ACZ
    Plant Dis; 2022 Jun; 106(6):1555-1557. PubMed ID: 34962416
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soybean (Glycine max L. Merr.) sprouts germinated under red light irradiation induce disease resistance against bacterial rotting disease.
    Dhakal R; Park E; Lee SW; Baek KH
    PLoS One; 2015; 10(2):e0117712. PubMed ID: 25679808
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of terminal flowering cowpea (Vigna unguiculata (L.) Walp.) mutants obtained by induced mutagenesis digs out the loss-of-function of phosphatidylethanolamine-binding protein.
    Eswaramoorthy V; Kandasamy T; Thiyagarajan K; Chockalingam V; Jegadeesan S; Natesan S; Adhimoolam K; Prabhakaran J; Singh R; Muthurajan R
    PLoS One; 2023; 18(12):e0295509. PubMed ID: 38096151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.