These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 28532370)

  • 1. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.
    Kriegeskorte N
    Annu Rev Vis Sci; 2015 Nov; 1():417-446. PubMed ID: 28532370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research.
    Macpherson T; Churchland A; Sejnowski T; DiCarlo J; Kamitani Y; Takahashi H; Hikida T
    Neural Netw; 2021 Dec; 144():603-613. PubMed ID: 34649035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural networks and neuroscience-inspired computer vision.
    Cox DD; Dean T
    Curr Biol; 2014 Sep; 24(18):R921-R929. PubMed ID: 25247371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep neural networks and image classification in biological vision.
    Charles Leek E; Leonardis A; Heinke D
    Vision Res; 2022 Aug; 197():108058. PubMed ID: 35487146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision.
    Spoerer CJ; Kietzmann TC; Mehrer J; Charest I; Kriegeskorte N
    PLoS Comput Biol; 2020 Oct; 16(10):e1008215. PubMed ID: 33006992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroscientific insights about computer vision models: a concise review.
    Susan S
    Biol Cybern; 2024 Dec; 118(5-6):331-348. PubMed ID: 39382577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual Object Recognition: Do We (Finally) Know More Now Than We Did?
    Gauthier I; Tarr MJ
    Annu Rev Vis Sci; 2016 Oct; 2():377-396. PubMed ID: 28532357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergent mechanisms of evidence integration in recurrent neural networks.
    Quax S; van Gerven M
    PLoS One; 2018; 13(10):e0205676. PubMed ID: 30325970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.
    Spoerer CJ; McClure P; Kriegeskorte N
    Front Psychol; 2017; 8():1551. PubMed ID: 28955272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Neurodegeneration
    Tuladhar A; Moore JA; Ismail Z; Forkert ND
    Front Neuroinform; 2021; 15():748370. PubMed ID: 34867256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Biological Face Recognition with Deep Convolutional Neural Networks.
    van Dyck LE; Gruber WR
    J Cogn Neurosci; 2023 Oct; 35(10):1521-1537. PubMed ID: 37584587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional neural networks for vision neuroscience: significance, developments, and outstanding issues.
    Celeghin A; Borriero A; Orsenigo D; Diano M; Méndez Guerrero CA; Perotti A; Petri G; Tamietto M
    Front Comput Neurosci; 2023; 17():1153572. PubMed ID: 37485400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Color encoding in biologically-inspired convolutional neural networks.
    Rafegas I; Vanrell M
    Vision Res; 2018 Oct; 151():7-17. PubMed ID: 29730046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Canonical circuit computations for computer vision.
    Schmid D; Jarvers C; Neumann H
    Biol Cybern; 2023 Oct; 117(4-5):299-329. PubMed ID: 37306782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representational Distance Learning for Deep Neural Networks.
    McClure P; Kriegeskorte N
    Front Comput Neurosci; 2016; 10():131. PubMed ID: 28082889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual differences among deep neural network models.
    Mehrer J; Spoerer CJ; Kriegeskorte N; Kietzmann TC
    Nat Commun; 2020 Nov; 11(1):5725. PubMed ID: 33184286
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 26.