These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28532420)

  • 41. Complete genome sequencing and network modeling to overcome trastuzumab resistance.
    Roukos DH
    Pharmacogenomics; 2010 Aug; 11(8):1039-43. PubMed ID: 20704462
    [No Abstract]   [Full Text] [Related]  

  • 42. Regulation of cell survival by HUNK mediates breast cancer resistance to HER2 inhibitors.
    Yeh ES; Abt MA; Hill EG
    Breast Cancer Res Treat; 2015 Jan; 149(1):91-8. PubMed ID: 25515931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Paclitaxel resistance in MCF-7/PTX cells is reversed by paeonol through suppression of the SET/phosphatidylinositol 3-kinase/Akt pathway.
    Zhang W; Cai J; Chen S; Zheng X; Hu S; Dong W; Lu J; Xing J; Dong Y
    Mol Med Rep; 2015 Jul; 12(1):1506-14. PubMed ID: 25760096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolving strategies for overcoming resistance to HER2-directed therapy: targeting the PI3K/Akt/mTOR pathway.
    Nahta R; O'Regan RM
    Clin Breast Cancer; 2010 Nov; 10 Suppl 3():S72-8. PubMed ID: 21115425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NBCn1 and NHE1 expression and activity in DeltaNErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pHi regulation and chemotherapy resistance.
    Lauritzen G; Jensen MB; Boedtkjer E; Dybboe R; Aalkjaer C; Nylandsted J; Pedersen SF
    Exp Cell Res; 2010 Sep; 316(15):2538-53. PubMed ID: 20542029
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HOXB7 Is an ERα Cofactor in the Activation of HER2 and Multiple ER Target Genes Leading to Endocrine Resistance.
    Jin K; Park S; Teo WW; Korangath P; Cho SS; Yoshida T; Győrffy B; Goswami CP; Nakshatri H; Cruz LA; Zhou W; Ji H; Su Y; Ekram M; Wu Z; Zhu T; Polyak K; Sukumar S
    Cancer Discov; 2015 Sep; 5(9):944-59. PubMed ID: 26180042
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The proinflammatory LTB4/BLT1 signal axis confers resistance to TGF-β1-induced growth inhibition by targeting Smad3 linker region.
    Jeon WK; Choi J; Park SJ; Jo EJ; Lee YK; Lim S; Kim JH; Letterio JJ; Liu F; Kim SJ; Kim BC
    Oncotarget; 2015 Dec; 6(39):41650-66. PubMed ID: 26497676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Defective Cyclin B1 Induction in Trastuzumab-emtansine (T-DM1) Acquired Resistance in HER2-positive Breast Cancer.
    Sabbaghi M; Gil-Gómez G; Guardia C; Servitja S; Arpí O; García-Alonso S; Menendez S; Arumi-Uria M; Serrano L; Salido M; Muntasell A; Martínez-García M; Zazo S; Chamizo C; González-Alonso P; Madoz-Gúrpide J; Eroles P; Arribas J; Tusquets I; Lluch A; Pandiella A; Rojo F; Rovira A; Albanell J
    Clin Cancer Res; 2017 Nov; 23(22):7006-7019. PubMed ID: 28821558
    [No Abstract]   [Full Text] [Related]  

  • 49. Positive interaction between lapatinib and capecitabine in human breast cancer models: study of molecular determinants.
    Chefrour M; Milano G; Formento P; Giacometti S; Denden A; Renée N; Iliadis A; Fischel JL; Ciccolini J
    Fundam Clin Pharmacol; 2012 Aug; 26(4):530-7. PubMed ID: 21623901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ErbB-2 nuclear function in breast cancer growth, metastasis and resistance to therapy.
    Elizalde PV; Cordo Russo RI; Chervo MF; Schillaci R
    Endocr Relat Cancer; 2016 Dec; 23(12):T243-T257. PubMed ID: 27765799
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular basis for therapy resistance.
    Lønning PE
    Mol Oncol; 2010 Jun; 4(3):284-300. PubMed ID: 20466604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Are current development programs realising the full potential of new agents?
    Lønning PE
    Breast Cancer Res; 2010 Dec; 12 Suppl 4(Suppl 4):S23. PubMed ID: 21172086
    [No Abstract]   [Full Text] [Related]  

  • 53. Erbb4 Signaling: an overlooked backup system?
    Ni Y; Zhang S
    Cell Cycle; 2015; 14(11):1623. PubMed ID: 25945734
    [No Abstract]   [Full Text] [Related]  

  • 54. Translating genomic research into clinical practice: promise and pitfalls.
    Sparano JA; Ostrer H; Kenny PA
    Am Soc Clin Oncol Educ Book; 2013; ():15-23. PubMed ID: 23714445
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanobiotechnological Approaches to Overcome Drug Resistance in Breast Cancer.
    Ranji P; Heydari Z; Alizadeh AM
    Curr Cancer Drug Targets; 2015; 15(7):544-62. PubMed ID: 26143946
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A prismatic view of the epigenetic-metabolic regulatory axis in breast cancer therapy resistance.
    Das C; Bhattacharya A; Adhikari S; Mondal A; Mondal P; Adhikary S; Roy S; Ramos K; Yadav KK; Tainer JA; Pandita TK
    Oncogene; 2024 Jun; 43(23):1727-1741. PubMed ID: 38719949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thiazole antibiotics against breast cancer.
    Halasi M; Zhao H; Dahari H; Bhat UG; Gonzalez EB; Lyubimo AV; Tonetti DA; Gartel AL
    Cell Cycle; 2010 Mar; 9(6):1214-7. PubMed ID: 20410687
    [No Abstract]   [Full Text] [Related]  

  • 58. Animal models for exploring the pharmacokinetics of breast cancer therapies.
    Rashid OM; Takabe K
    Expert Opin Drug Metab Toxicol; 2015 Feb; 11(2):221-30. PubMed ID: 25416501
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Breast cancer: CTCs - a predictive approach for targeted cancer therapy.
    Errico A
    Nat Rev Clin Oncol; 2014 Sep; 11(9):501. PubMed ID: 25073006
    [No Abstract]   [Full Text] [Related]  

  • 60. PheWAS-Based Systems Genetics Methods for Anti-Breast Cancer Drug Discovery.
    Gao M; Quan Y; Zhou XH; Zhang HY
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30781719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.