BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 28532451)

  • 21. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid by Stable Overexpression of PgdS Hydrolase in Bacillus amyloliquefaciens NB.
    Sha Y; Zhang Y; Qiu Y; Xu Z; Li S; Feng X; Wang M; Xu H
    J Agric Food Chem; 2019 Jan; 67(1):282-290. PubMed ID: 30543111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria.
    Shirai T; Nakato A; Izutani N; Nagahisa K; Shioya S; Kimura E; Kawarabayasi Y; Yamagishi A; Gojobori T; Shimizu H
    Metab Eng; 2005 Mar; 7(2):59-69. PubMed ID: 15781416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S.
    Qiu Y; Sha Y; Zhang Y; Xu Z; Li S; Lei P; Xu Z; Feng X; Xu H
    Bioresour Technol; 2017 Sep; 239():197-203. PubMed ID: 28521229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recruiting a new strategy to improve levan production in Bacillus amyloliquefaciens.
    Feng J; Gu Y; Quan Y; Zhang W; Cao M; Gao W; Song C; Yang C; Wang S
    Sci Rep; 2015 Sep; 5():13814. PubMed ID: 26347185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-level production of poly-γ-glutamic acid from untreated molasses by Bacillus siamensis IR10.
    Wang D; Kim H; Lee S; Kim DH; Joe MH
    Microb Cell Fact; 2020 May; 19(1):101. PubMed ID: 32398084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPRi-Based Dynamic Regulation of Hydrolase for the Synthesis of Poly-γ-Glutamic Acid with Variable Molecular Weights.
    Sha Y; Qiu Y; Zhu Y; Sun T; Luo Z; Gao J; Feng X; Li S; Xu H
    ACS Synth Biol; 2020 Sep; 9(9):2450-2459. PubMed ID: 32794764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving poly-(γ-glutamic acid) production from a glutamic acid-independent strain from inulin substrate by consolidated bioprocessing.
    Qiu Y; Zhang Y; Zhu Y; Sha Y; Xu Z; Feng X; Li S; Xu H
    Bioprocess Biosyst Eng; 2019 Oct; 42(10):1711-1720. PubMed ID: 31286217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum.
    Shi F; Zhang M; Li Y
    World J Microbiol Biotechnol; 2017 Jun; 33(6):122. PubMed ID: 28534111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
    Lubitz D; Wendisch VF
    BMC Microbiol; 2016 Oct; 16(1):235. PubMed ID: 27717325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02.
    Cai D; He P; Lu X; Zhu C; Zhu J; Zhan Y; Wang Q; Wen Z; Chen S
    Sci Rep; 2017 Feb; 7():43404. PubMed ID: 28230096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes.
    Cao M; Geng W; Liu L; Song C; Xie H; Guo W; Jin Y; Wang S
    Bioresour Technol; 2011 Mar; 102(5):4251-7. PubMed ID: 21232939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of Glutamate Dependence Mechanism for Poly-γ-glutamic Acid Production in Bacillus subtilis on the Basis of Transcriptome Analysis.
    Sha Y; Sun T; Qiu Y; Zhu Y; Zhan Y; Zhang Y; Xu Z; Li S; Feng X; Xu H
    J Agric Food Chem; 2019 Jun; 67(22):6263-6274. PubMed ID: 31088055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC 2108 producing poly-(γ-glutamic acid).
    Huang B; Qin P; Xu Z; Zhu R; Meng Y
    Bioresour Technol; 2011 Feb; 102(3):3595-8. PubMed ID: 21071211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutations in genes encoding antibiotic substances increase the synthesis of poly-γ-glutamic acid in Bacillus amyloliquefaciens LL3.
    Gao W; Liu F; Zhang W; Quan Y; Dang Y; Feng J; Gu Y; Wang S; Song C; Yang C
    Microbiologyopen; 2017 Feb; 6(1):. PubMed ID: 27539744
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Zhang J; Qian F; Dong F; Wang Q; Yang J; Jiang Y; Yang S
    ACS Synth Biol; 2020 Jul; 9(7):1897-1906. PubMed ID: 32627539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.
    Mizuno Y; Nagano-Shoji M; Kubo S; Kawamura Y; Yoshida A; Kawasaki H; Nishiyama M; Yoshida M; Kosono S
    Microbiologyopen; 2016 Feb; 5(1):152-73. PubMed ID: 26663479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA.
    Cao M; Geng W; Zhang W; Sun J; Wang S; Feng J; Zheng P; Jiang A; Song C
    Microb Biotechnol; 2013 Nov; 6(6):675-84. PubMed ID: 23919316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic and metabolic engineering for poly-γ-glutamic acid production: current progress, challenges, and prospects.
    Zhang Z; He P; Cai D; Chen S
    World J Microbiol Biotechnol; 2022 Aug; 38(11):208. PubMed ID: 36030456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of nattokinase against the production of poly (γ-glutamic Acid) in Bacillus subtilis natto.
    Wang L; Liu N; Yu C; Chen J; Hong K; Zang Y; Wang M; Nie G
    Biotechnol Lett; 2020 Nov; 42(11):2285-2291. PubMed ID: 32596743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromosomal editing of Corynebacterium glutamicum ATCC 13032 to produce gamma-aminobutyric acid.
    Yao C; Shi F; Wang X
    Biotechnol Appl Biochem; 2023 Feb; 70(1):7-21. PubMed ID: 35106837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.