BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 28532476)

  • 1. Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel.
    Higa K; Kitamura N; Goto K; Kurokawa T; Gong JP; Kanaya F; Yasuda K
    BMC Musculoskelet Disord; 2017 May; 18(1):210. PubMed ID: 28532476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of spontaneous hyaline cartilage regeneration using a double-network gel: efficacy of a novel therapeutic strategy for an articular cartilage defect.
    Kitamura N; Yasuda K; Ogawa M; Arakaki K; Kai S; Onodera S; Kurokawa T; Gong JP
    Am J Sports Med; 2011 Jun; 39(6):1160-9. PubMed ID: 21460067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(2-acrylamido-2-methylpropanesulfonic acid) gel induces articular cartilage regeneration in vivo: comparisons of the induction ability between single- and double-network gels.
    Ogawa M; Kitamura N; Kurokawa T; Arakaki K; Tanaka Y; Gong JP; Yasuda K
    J Biomed Mater Res A; 2012 Sep; 100(9):2244-51. PubMed ID: 22492713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel.
    Yokota M; Yasuda K; Kitamura N; Arakaki K; Onodera S; Kurokawa T; Gong JP
    BMC Musculoskelet Disord; 2011 Feb; 12():49. PubMed ID: 21338528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: short-term results.
    Matsuda H; Kitamura N; Kurokawa T; Arakaki K; Gong JP; Kanaya F; Yasuda K
    BMC Musculoskelet Disord; 2013 Jan; 14():50. PubMed ID: 23369101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo cartilage regeneration induced by a double-network hydrogel: Evaluation of a novel therapeutic strategy for femoral articular cartilage defects in a sheep model.
    Kitamura N; Yokota M; Kurokawa T; Gong JP; Yasuda K
    J Biomed Mater Res A; 2016 Sep; 104(9):2159-65. PubMed ID: 27087198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intra-articular administration of hyaluronic acid increases the volume of the hyaline cartilage regenerated in a large osteochondral defect by implantation of a double-network gel.
    Fukui T; Kitamura N; Kurokawa T; Yokota M; Kondo E; Gong JP; Yasuda K
    J Mater Sci Mater Med; 2014 Apr; 25(4):1173-82. PubMed ID: 24394983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a salmon-derived crosslinked atelocollagen sponge disc containing osteogenic protein-1 for articular cartilage regeneration: in vivo evaluations with rabbits.
    Mori H; Kondo E; Kawaguchi Y; Kitamura N; Nagai N; Iida H; Yasuda K
    BMC Musculoskelet Disord; 2013 May; 14():174. PubMed ID: 23721417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of culture on PAMPS/PDMAAm double-network gel on chondrogenic differentiation of mouse C3H10T1/2 cells: in vitro experimental study.
    Inagaki Y; Kitamura N; Kurokawa T; Tanaka Y; Gong JP; Yasuda K; Tohyama H
    BMC Musculoskelet Disord; 2014 Sep; 15():320. PubMed ID: 25262146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: comparisons with the normal articular cartilage.
    Imabuchi R; Ohmiya Y; Kwon HJ; Onodera S; Kitamura N; Kurokawa T; Gong JP; Yasuda K
    BMC Musculoskelet Disord; 2011 Sep; 12():213. PubMed ID: 21955995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor).
    Nishida T; Kubota S; Kojima S; Kuboki T; Nakao K; Kushibiki T; Tabata Y; Takigawa M
    J Bone Miner Res; 2004 Aug; 19(8):1308-19. PubMed ID: 15231019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biphasic Double-Network Hydrogel With Compartmentalized Loading of Bioactive Glass for Osteochondral Defect Repair.
    Liu B; Zhao Y; Zhu T; Gao S; Ye K; Zhou F; Qiu D; Wang X; Tian Y; Qu X
    Front Bioeng Biotechnol; 2020; 8():752. PubMed ID: 32714919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrilin-3 codelivery with adipose-derived mesenchymal stem cells promotes articular cartilage regeneration in a rat osteochondral defect model.
    Muttigi MS; Kim BJ; Choi B; Yoshie A; Kumar H; Han I; Park H; Lee SH
    J Tissue Eng Regen Med; 2018 Mar; 12(3):667-675. PubMed ID: 28556569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrapurified Alginate Gel Containing Bone Marrow Aspirate Concentrate Enhances Cartilage and Bone Regeneration on Osteochondral Defects in a Rabbit Model.
    Xu L; Urita A; Onodera T; Hishimura R; Nonoyama T; Hamasaki M; Liang D; Homan K; Gong JP; Iwasaki N
    Am J Sports Med; 2021 Jul; 49(8):2199-2210. PubMed ID: 34061689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite.
    Park YB; Ha CW; Kim JA; Han WJ; Rhim JH; Lee HJ; Kim KJ; Park YG; Chung JY
    Osteoarthritis Cartilage; 2017 Apr; 25(4):570-580. PubMed ID: 27789339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [RELATIONSHIP BETWEEN SUBCHONDRAL BONE RECONSTRUCTION AND ARTICULAR CARTILAGE REGENERATION IN A RABBIT MODEL OF SPONTANEOUS OSTEOCHONDRAL REPAIR].
    Wang Y; Meng H; Yuan Xueling ; Peng J; Guo Q; Lu S; Wang A
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jun; 28(6):681-6. PubMed ID: 26455217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regenerative effect of platelet-rich plasma on healing in large osteochondral defects.
    Sun Y; Feng Y; Zhang CQ; Chen SB; Cheng XG
    Int Orthop; 2010 Apr; 34(4):589-97. PubMed ID: 19434411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique].
    Zhang W; Lian Q; Li D; Wang K; Jin Z; Bian W; Liu Y; He J; Wang L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):318-24. PubMed ID: 24844012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Scaffold-Free Allogeneic Construct From Adipose-Derived Stem Cells Regenerates an Osteochondral Defect in a Rabbit Model.
    Oshima T; Nakase J; Toratani T; Numata H; Takata Y; Nakayama K; Tsuchiya H
    Arthroscopy; 2019 Feb; 35(2):583-593. PubMed ID: 30612760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photopolymerizable Injectable Cartilage Mimetic Hydrogel for the Treatment of Focal Chondral Lesions: A Proof of Concept Study in a Rabbit Animal Model.
    Pascual-Garrido C; Aisenbrey EA; Rodriguez-Fontan F; Payne KA; Bryant SJ; Goodrich LR
    Am J Sports Med; 2019 Jan; 47(1):212-221. PubMed ID: 30481048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.