BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28532621)

  • 1. An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.
    Auxilio AR; Choo WL; Kohli I; Chakravartula Srivatsa S; Bhattacharya S
    Waste Manag; 2017 Sep; 67():143-154. PubMed ID: 28532621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.
    Wu C; Nahil MA; Miskolczi N; Huang J; Williams PT
    Environ Sci Technol; 2014; 48(1):819-26. PubMed ID: 24283272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals.
    Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B
    Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of fractionated drop-in liquid fuel of plastic wastes from a commercial pyrolysis plant.
    Lee D; Nam H; Wang S; Kim H; Kim JH; Won Y; Hwang BW; Kim YD; Nam H; Lee KH; Ryu HJ
    Waste Manag; 2021 May; 126():411-422. PubMed ID: 33836392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High quality liquid fuel production from waste plastics via two-step cracking route in a bottom-up approach using bi-functional Fe/HZSM-5 catalyst.
    Dwivedi U; Naik SN; Pant KK
    Waste Manag; 2021 Aug; 132():151-161. PubMed ID: 34333250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.
    Miskolczi N; Ateş F; Borsodi N
    Bioresour Technol; 2013 Sep; 144():370-9. PubMed ID: 23891947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis of polyolefins for increasing the yield of monomers' recovery.
    Donaj PJ; Kaminsky W; Buzeto F; Yang W
    Waste Manag; 2012 May; 32(5):840-6. PubMed ID: 22093704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.
    Joppert N; da Silva AA; da Costa Marques MR
    Waste Manag; 2015 Feb; 36():166-76. PubMed ID: 25532672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of HDPE into Value Products by Fast Pyrolysis Using FCC Spent Catalysts in a Fountain Confined Conical Spouted Bed Reactor.
    Orozco S; Artetxe M; Lopez G; Suarez M; Bilbao J; Olazar M
    ChemSusChem; 2021 Oct; 14(19):4291-4300. PubMed ID: 34101378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil.
    Kanattukara BV; Singh G; Sarkar P; Chopra A; Singh D; Mondal S; Kapur GS; Ramakumar SSV
    Environ Sci Pollut Res Int; 2023 May; 30(24):64994-65010. PubMed ID: 37074603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 2: Effect of process temperature on product characteristics and their future applications.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2020 May; 261():110112. PubMed ID: 32001431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the potential of clay catalysts in catalytic pyrolysis of mixed plastic waste for fuel and energy recovery.
    Cai W; Kumar R; Zheng Y; Zhu Z; Wong JWC; Zhao J
    Heliyon; 2023 Dec; 9(12):e23140. PubMed ID: 38076152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines.
    Budsaereechai S; Hunt AJ; Ngernyen Y
    RSC Adv; 2019 Feb; 9(10):5844-5857. PubMed ID: 35515940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of hazardous plastic wastes into useful chemical products.
    Siddiqui MN
    J Hazard Mater; 2009 Aug; 167(1-3):728-35. PubMed ID: 19201536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing olefin production via steam cracking of distilled pyrolysis oils from difficult-to-recycle municipal plastic waste and marine litter.
    Kusenberg M; Faussone GC; Thi HD; Roosen M; Grilc M; Eschenbacher A; De Meester S; Van Geem KM
    Sci Total Environ; 2022 Sep; 838(Pt 2):156092. PubMed ID: 35605869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals.
    Šuhaj P; Haydary J; Husár J; Steltenpohl P; Šupa I
    Waste Manag; 2019 Feb; 85():1-10. PubMed ID: 30803562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waste catalysts for waste polymer.
    Salmiaton A; Garforth A
    Waste Manag; 2007; 27(12):1891-6. PubMed ID: 17084608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ZnCl
    Sun K; Huang Q; Chi Y; Yan J
    Waste Manag; 2018 Nov; 81():128-137. PubMed ID: 30527029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient catalytic pyrolysis of polyethylene waste to derive fuel products by novel polyoxometalate/kaolin composites.
    Attique S; Batool M; Yaqub M; Goerke O; Gregory DH; Shah AT
    Waste Manag Res; 2020 Jun; 38(6):689-695. PubMed ID: 32026752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.