BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28532621)

  • 21. Production of liquid hydrocarbons by thermo-acidic method from waste high-density polyethylene.
    Kumar A; Lingfa P
    Comb Chem High Throughput Screen; 2023 May; ():. PubMed ID: 37151067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermocatalytic Conversion of Plastics into Liquid Fuels over Clays.
    Seliverstov ES; Furda LV; Lebedeva OE
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fe-POM/attapulgite composite materials: Efficient catalysts for plastic pyrolysis.
    Attique S; Batool M; Goerke O; Abbas G; Saeed FA; Din MI; Jalees I; Irfan A; Gregory DH; Tufail Shah A
    Waste Manag Res; 2022 Sep; 40(9):1433-1439. PubMed ID: 35243944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).
    Al-Salem SM; Antelava A; Constantinou A; Manos G; Dutta A
    J Environ Manage; 2017 Jul; 197():177-198. PubMed ID: 28384612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyethylene terephthalate conversion into liquid fuel by its co-pyrolysis with low- and high-density polyethylene employing scrape aluminium as catalyst.
    Gulab H; Malik S
    Environ Technol; 2024 Jul; 45(18):3721-3735. PubMed ID: 37326613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.
    Breyer S; Mekhitarian L; Rimez B; Haut B
    Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling liquid hydrocarbon composition in valorization of plastic waste via tuning zeolite framework and SiO
    Dwivedi U; Pant KK; Naik SN
    J Environ Manage; 2021 Nov; 297():113288. PubMed ID: 34298345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of aluminum leaching pretreatment on catalytic pyrolysis of metallised food packaging plastics and its linear and nonlinear kinetic behaviour.
    Yousef S; Eimontas J; Striūgas N; Abdelnaby MA
    Sci Total Environ; 2022 Oct; 844():157150. PubMed ID: 35803432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing hydrocarbon production via ex-situ catalytic co-pyrolysis of biomass and high-density polyethylene: Study of synergistic effect and aromatics selectivity.
    He T; Zhong S; Liu C; Shujaa A; Zhang B
    Waste Manag; 2021 Jun; 128():189-199. PubMed ID: 33992999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on synergistic pyrolysis and kinetics of mixed plastics based on spent fluid-catalytic-cracking catalyst.
    Wang K; Bian H; Lai Q; Chen Y; Li Z; Hao Y; Yan L; Wang C; Tian X
    Environ Sci Pollut Res Int; 2023 May; 30(25):66665-66682. PubMed ID: 37099103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor.
    Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I
    RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.
    Wang Y; Dai L; Fan L; Cao L; Zhou Y; Zhao Y; Liu Y; Ruan R
    Waste Manag; 2017 Mar; 61():276-282. PubMed ID: 28129927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE).
    Santella C; Cafiero L; De Angelis D; La Marca F; Tuffi R; Vecchio Ciprioti S
    Waste Manag; 2016 Aug; 54():143-52. PubMed ID: 27184448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The synergistic mechanism between coke depositions and gas for H
    Xu D; Xiong Y; Zhang S; Su Y
    Waste Manag; 2021 Feb; 121():23-32. PubMed ID: 33341691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different reaction behaviours of light or heavy density polyethylene during the pyrolysis with biochar as the catalyst.
    Li C; Zhang C; Gholizadeh M; Hu X
    J Hazard Mater; 2020 Nov; 399():123075. PubMed ID: 32544769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermo-catalytic conversion of waste plastics into surrogate fuels over spherical activated carbon of long-life durability.
    Wan K; Chen H; Li P; Duan D; Niu B; Zhang Y; Long D
    Waste Manag; 2022 Jul; 148():1-11. PubMed ID: 35644121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of C
    Xu J; Tian X; Huang W; Ke L; Fan L; Zhang Q; Cui X; Wu Q; Zeng Y; Cobb K; Liu Y; Ruan R; Wang Y
    Sci Total Environ; 2023 Nov; 899():165597. PubMed ID: 37467986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a pyrolyser model for the conversion of thermoplastics into fuels.
    Dassi Djoukouo NH; Djousse BMK; Doukeng HG; Egbe DAM; Tangka JK; Tchoffo M
    Heliyon; 2024 Mar; 10(5):e26702. PubMed ID: 38463835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.