BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 28533032)

  • 21. Facile synthesis of Fe
    Jiang J; Sun X; Li Y; Deng C; Duan G
    Talanta; 2018 Feb; 178():600-607. PubMed ID: 29136869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immobilization of titanium dioxide/ions on magnetic microspheres for enhanced recognition and extraction of mono- and multi-phosphopeptides.
    Wang J; Wang Z; Sun N; Deng C
    Mikrochim Acta; 2019 Mar; 186(4):236. PubMed ID: 30868259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ synthesis of a novel metal oxide affinity chromatography affinity probe for the selective enrichment of low-abundance phosphopeptides.
    Wang B; Wu H; Yan Y; Tang K; Ding CF
    Rapid Commun Mass Spectrom; 2020 Oct; 34(20):e8881. PubMed ID: 32638431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Affinity chromatography based phosphoproteome research on lung cancer cells and its application].
    Zhang B; Wang C; Guo M; Xiao H
    Se Pu; 2021 Jan; 39(1):77-86. PubMed ID: 34227361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrophilic Nb⁵⁺-immobilized magnetic core-shell microsphere--A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides.
    Sun X; Liu X; Feng J; Li Y; Deng C; Duan G
    Anal Chim Acta; 2015 Jun; 880():67-76. PubMed ID: 26092339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Selective enrichment of phosphopeptides with aspartic acid based immobilized metal ion affinity chromatography materials].
    Shen H; Alimu K
    Se Pu; 2018 Apr; 36(4):334-338. PubMed ID: 30136514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic microspheres modified with Ti(IV) and Nb(V) for enrichment of phosphopeptides.
    Jiang J; Sun X; She X; Li J; Li Y; Deng C; Duan G
    Mikrochim Acta; 2018 May; 185(6):309. PubMed ID: 29802452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile preparation of monolithic immobilized metal affinity chromatography capillary columns for selective enrichment of phosphopeptides.
    Zhang L; Wang H; Liang Z; Yang K; Zhang L; Zhang Y
    J Sep Sci; 2011 Aug; 34(16-17):2122-30. PubMed ID: 21598383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis.
    Thingholm TE; Jensen ON; Larsen MR
    Methods Mol Biol; 2009; 527():67-78, xi. PubMed ID: 19241006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytic acid functionalized Fe
    Zhang K; Hu D; Deng S; Han M; Wang X; Liu H; Liu Y; Xie M
    Mikrochim Acta; 2019 Jan; 186(2):68. PubMed ID: 30627783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Ti-IMAC magnetic polymeric nanoparticles for phosphopeptide enrichment from complex real samples.
    Capriotti AL; Cavaliere C; Ferraris F; Gianotti V; Laus M; Piovesana S; Sparnacci K; Zenezini Chiozzi R; Laganà A
    Talanta; 2018 Feb; 178():274-281. PubMed ID: 29136822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of an enrichment method for endogenous phosphopeptide characterization in human serum.
    La Barbera G; Capriotti AL; Cavaliere C; Ferraris F; Laus M; Piovesana S; Sparnacci K; Laganà A
    Anal Bioanal Chem; 2018 Jan; 410(3):1177-1185. PubMed ID: 29318361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of metal and metal oxide media for phosphopeptide enrichment prior to mass spectrometric analyses.
    Gates MB; Tomer KB; Deterding LJ
    J Am Soc Mass Spectrom; 2010 Oct; 21(10):1649-59. PubMed ID: 20634090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new Ti-based IMAC nanohybrid with high hydrophilicity and enhanced absorption capacity for the selective enrichment of phosphopeptides.
    Wang X; Yu J; Yang H; Shen J; Liu H; Zhou J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Aug; 1179():122851. PubMed ID: 34246169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva.
    Li Y; Liu L; Wu H; Deng C
    Anal Chim Acta; 2019 Nov; 1079():111-119. PubMed ID: 31387701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zirconium(IV)-IMAC Revisited: Improved Performance and Phosphoproteome Coverage by Magnetic Microparticles for Phosphopeptide Affinity Enrichment.
    Arribas Diez I; Govender I; Naicker P; Stoychev S; Jordaan J; Jensen ON
    J Proteome Res; 2021 Jan; 20(1):453-462. PubMed ID: 33226818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cotton Ti-IMAC: Developing Phosphorylated Cotton as a Novel Platform for Phosphopeptide Enrichment.
    Wang D; Huang J; Zhang H; Gu TJ; Li L
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):47893-47901. PubMed ID: 37812448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monodisperse Ti
    Wang H; Tang R; Jia S; Ma S; Gong B; Ou J
    Mikrochim Acta; 2022 Oct; 189(11):405. PubMed ID: 36197509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of biases in phosphopeptide enrichment by Ti(4+)-immobilized metal affinity chromatography and TiO2 using a massive synthetic library and human cell digests.
    Matheron L; van den Toorn H; Heck AJ; Mohammed S
    Anal Chem; 2014 Aug; 86(16):8312-20. PubMed ID: 25068997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.