BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 28533272)

  • 41. Genetically modulating T-cell function to target cancer.
    Merhavi-Shoham E; Haga-Friedman A; Cohen CJ
    Semin Cancer Biol; 2012 Feb; 22(1):14-22. PubMed ID: 22210183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving the efficacy and safety of engineered T cell therapy for cancer.
    Shi H; Liu L; Wang Z
    Cancer Lett; 2013 Jan; 328(2):191-7. PubMed ID: 23022475
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adoptive CD8
    Jiang X; Xu J; Liu M; Xing H; Wang Z; Huang L; Mellor AL; Wang W; Wu S
    Cancer Lett; 2019 Oct; 462():23-32. PubMed ID: 31356845
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Principles of adoptive T cell therapy in cancer.
    Met Ö; Jensen KM; Chamberlain CA; Donia M; Svane IM
    Semin Immunopathol; 2019 Jan; 41(1):49-58. PubMed ID: 30187086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-cell transcriptome analysis of the heterogeneous effects of differential expression of tumor PD-L1 on responding TCR-T cells.
    Ding R; Liu S; Wang S; Chen H; Wang F; Xu Q; Zhu L; Dong X; Gu Y; Zhang X; Chao CC; Gao Q
    Theranostics; 2021; 11(10):4957-4974. PubMed ID: 33754038
    [No Abstract]   [Full Text] [Related]  

  • 46. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells.
    Jung IY; Kim YY; Yu HS; Lee M; Kim S; Lee J
    Cancer Res; 2018 Aug; 78(16):4692-4703. PubMed ID: 29967261
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human T cells engineered to express a programmed death 1/28 costimulatory retargeting molecule display enhanced antitumor activity.
    Ankri C; Shamalov K; Horovitz-Fried M; Mauer S; Cohen CJ
    J Immunol; 2013 Oct; 191(8):4121-9. PubMed ID: 24026081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. To affinity and beyond: harnessing the T cell receptor for cancer immunotherapy.
    Thaxton JE; Li Z
    Hum Vaccin Immunother; 2014; 10(11):3313-21. PubMed ID: 25483644
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Quest for the Best: How TCR Affinity, Avidity, and Functional Avidity Affect TCR-Engineered T-Cell Antitumor Responses.
    Campillo-Davo D; Flumens D; Lion E
    Cells; 2020 Jul; 9(7):. PubMed ID: 32708366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adoptive immunotherapy for the treatment of glioblastoma: progress and possibilities.
    Kuramitsu S; Yamamichi A; Ohka F; Motomura K; Hara M; Natsume A
    Immunotherapy; 2016 Dec; 8(12):1393-1404. PubMed ID: 28000534
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fractionated Radiation Therapy Stimulates Antitumor Immunity Mediated by Both Resident and Infiltrating Polyclonal T-cell Populations when Combined with PD-1 Blockade.
    Dovedi SJ; Cheadle EJ; Popple AL; Poon E; Morrow M; Stewart R; Yusko EC; Sanders CM; Vignali M; Emerson RO; Robins HS; Wilkinson RW; Honeychurch J; Illidge TM
    Clin Cancer Res; 2017 Sep; 23(18):5514-5526. PubMed ID: 28533222
    [No Abstract]   [Full Text] [Related]  

  • 52. Human effector T cells derived from central memory cells rather than CD8(+)T cells modified by tumor-specific TCR gene transfer possess superior traits for adoptive immunotherapy.
    Wu F; Zhang W; Shao H; Bo H; Shen H; Li J; Liu Y; Wang T; Ma W; Huang S
    Cancer Lett; 2013 Oct; 339(2):195-207. PubMed ID: 23791878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Complement Receptors C3aR and C5aR Are a New Class of Immune Checkpoint Receptor in Cancer Immunotherapy.
    Wang Y; Zhang H; He YW
    Front Immunol; 2019; 10():1574. PubMed ID: 31379815
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The potential and promise for clinical application of adoptive T cell therapy in cancer.
    Li Y; Zheng Y; Liu T; Liao C; Shen G; He Z
    J Transl Med; 2024 May; 22(1):413. PubMed ID: 38693513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Immunotherapy Approaches Beyond PD-1 Inhibition: the Future of Cellular Therapy for Head and Neck Squamous Cell Carcinoma.
    Qureshi HA; Lee SM
    Curr Treat Options Oncol; 2019 Mar; 20(4):31. PubMed ID: 30874960
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model.
    Lee SWL; Adriani G; Ceccarello E; Pavesi A; Tan AT; Bertoletti A; Kamm RD; Wong SC
    Front Immunol; 2018; 9():416. PubMed ID: 29559973
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reactivation of low avidity tumor-specific CD8
    Sugiyarto G; Lau D; Hill SL; Arcia-Anaya D; Boulanger DSM; Parkes E; James E; Elliott T
    J Immunother Cancer; 2023 Aug; 11(8):. PubMed ID: 37586767
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment.
    Blake SJ; Ching AL; Kenna TJ; Galea R; Large J; Yagita H; Steptoe RJ
    PLoS One; 2015; 10(3):e0119483. PubMed ID: 25741704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Loss of CTL function among high-avidity tumor-specific CD8+ T cells following tumor infiltration.
    Janicki CN; Jenkinson SR; Williams NA; Morgan DJ
    Cancer Res; 2008 Apr; 68(8):2993-3000. PubMed ID: 18413769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.