BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28533336)

  • 21. A putative silencer variant in a spontaneous canine model of retinitis pigmentosa.
    Kaukonen M; Quintero IB; Mukarram AK; Hytönen MK; Holopainen S; Wickström K; Kyöstilä K; Arumilli M; Jalomäki S; Daub CO; Kere J; Lohi H;
    PLoS Genet; 2020 Mar; 16(3):e1008659. PubMed ID: 32150541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The canine Phosducin gene: characterization of the exon-intron structure and exclusion as a candidate gene for generalized progressive retinal atrophy in 11 dog breeds.
    Dekomien G; Epplen JT
    Mol Vis; 2002 Jun; 8():138-42. PubMed ID: 12091798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in renal tubule primary cilia length in a mouse model of Bardet-Biedl syndrome.
    Mokrzan EM; Lewis JS; Mykytyn K
    Nephron Exp Nephrol; 2007; 106(3):e88-96. PubMed ID: 17519557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cloning and developmental expression of unconventional myosin IXA (MYO9A) a gene in the Bardet-Biedl syndrome (BBS4) region at chromosome 15q22-q23.
    Gorman SW; Haider NB; Grieshammer U; Swiderski RE; Kim E; Welch JW; Searby C; Leng S; Carmi R; Sheffield VC; Duhl DM
    Genomics; 1999 Jul; 59(2):150-60. PubMed ID: 10409426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review of research to elucidate the causes of the generalized progressive retinal atrophies.
    Petersen-Jones SM
    Vet J; 1998 Jan; 155(1):5-18. PubMed ID: 9455155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of six candidate genes as potential modifiers of disease expression in canine XLPRA1, a model for human X-linked retinitis pigmentosa 3.
    Guyon R; Pearce-Kelling SE; Zeiss CJ; Acland GM; Aguirre GD
    Mol Vis; 2007 Jul; 13():1094-105. PubMed ID: 17653054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BBS4 is required for intraflagellar transport coordination and basal body number in mammalian olfactory cilia.
    Uytingco CR; Williams CL; Xie C; Shively DT; Green WW; Ukhanov K; Zhang L; Nishimura DY; Sheffield VC; Martens JR
    J Cell Sci; 2019 Feb; 132(5):. PubMed ID: 30665891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel mutation in TTC8 is associated with progressive retinal atrophy in the golden retriever.
    Downs LM; Wallin-Håkansson B; Bergström T; Mellersh CS
    Canine Genet Epidemiol; 2014; 1():4. PubMed ID: 26401321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel form of progressive retinal atrophy in Swedish vallhund dogs.
    Cooper AE; Ahonen S; Rowlan JS; Duncan A; Seppälä EH; Vanhapelto P; Lohi H; Komáromy AM
    PLoS One; 2014; 9(9):e106610. PubMed ID: 25198798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in understanding the spectrum of canine generalised progressive retinal atrophy.
    Clements PJ; Sargan DR; Gould DJ; Petersen-Jones SM
    J Small Anim Pract; 1996 Apr; 37(4):155-62. PubMed ID: 8731401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene therapy prevents photoreceptor death and preserves retinal function in a Bardet-Biedl syndrome mouse model.
    Simons DL; Boye SL; Hauswirth WW; Wu SM
    Proc Natl Acad Sci U S A; 2011 Apr; 108(15):6276-81. PubMed ID: 21444805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa.
    Beltran WA; Hammond P; Acland GM; Aguirre GD
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1669-81. PubMed ID: 16565408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Late-onset progressive retinal atrophy in the Gordon and Irish Setter breeds is associated with a frameshift mutation in C2orf71.
    Downs LM; Bell JS; Freeman J; Hartley C; Hayward LJ; Mellersh CS
    Anim Genet; 2013 Apr; 44(2):169-77. PubMed ID: 22686255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the mutation causing progressive retinal atrophy in Old Danish Pointing Dog.
    Karlskov-Mortensen P; Proschowsky HF; Gao F; Fredholm M
    Anim Genet; 2018 Jun; 49(3):237-241. PubMed ID: 29624701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Whole-Genome Sequencing of a Canine Family Trio Reveals a FAM83G Variant Associated with Hereditary Footpad Hyperkeratosis.
    Sayyab S; Viluma A; Bergvall K; Brunberg E; Jagannathan V; Leeb T; Andersson G; Bergström TF
    G3 (Bethesda); 2016 Jan; 6(3):521-7. PubMed ID: 26747202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21).
    Heon E; Kim G; Qin S; Garrison JE; Tavares E; Vincent A; Nuangchamnong N; Scott CA; Slusarski DC; Sheffield VC
    Hum Mol Genet; 2016 Jun; 25(11):2283-2294. PubMed ID: 27008867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cosegregation of codon 807 mutation of the canine rod cGMP phosphodiesterase beta gene and rcd1.
    Ray K; Baldwin VJ; Acland GM; Blanton SH; Aguirre GD
    Invest Ophthalmol Vis Sci; 1994 Dec; 35(13):4291-9. PubMed ID: 8002249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The phenotype in Norwegian patients with Bardet-Biedl syndrome with mutations in the BBS4 gene.
    Riise R; Tornqvist K; Wright AF; Mykytyn K; Sheffield VC
    Arch Ophthalmol; 2002 Oct; 120(10):1364-7. PubMed ID: 12365916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generalized progressive retinal atrophy in the Irish Glen of Imaal Terrier is associated with a deletion in the ADAM9 gene.
    Kropatsch R; Petrasch-Parwez E; Seelow D; Schlichting A; Gerding WM; Akkad DA; Epplen JT; Dekomien G
    Mol Cell Probes; 2010 Dec; 24(6):357-63. PubMed ID: 20691256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exclusion of known progressive retinal atrophy genes for blindness in the Hungarian Puli.
    Chew T; Haase B; Willet CE; Wade CM
    Anim Genet; 2017 Aug; 48(4):500-501. PubMed ID: 28378943
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.