These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 28533356)
41. The expression of glucocorticoid and mineralocorticoid receptors in pituitary tumors causing Cushing's disease and silent corticotroph tumors. Kober P; Rusetska N; Mossakowska BJ; Maksymowicz M; Pękul M; Zieliński G; Styk A; Kunicki J; Działach Ł; Witek P; Bujko M Front Endocrinol (Lausanne); 2023; 14():1124646. PubMed ID: 37065760 [TBL] [Abstract][Full Text] [Related]
42. Truncated Cables1 causes agenesis of the corpus callosum in mice. Mizuno S; Tra DT; Mizobuchi A; Iseki H; Mizuno-Iijima S; Kim JD; Ishida J; Matsuda Y; Kunita S; Fukamizu A; Sugiyama F; Yagami K Lab Invest; 2014 Mar; 94(3):321-30. PubMed ID: 24336072 [TBL] [Abstract][Full Text] [Related]
43. Influence of the fibroblast growth factor receptor 4 expression and the G388R functional polymorphism on Cushing's disease outcome. Brito LP; Lerário AM; Bronstein MD; Soares IC; Mendonca BB; Fragoso MC J Clin Endocrinol Metab; 2010 Oct; 95(10):E271-9. PubMed ID: 20660043 [TBL] [Abstract][Full Text] [Related]
44. Cables1 protects p63 from proteasomal degradation to ensure deletion of cells after genotoxic stress. Wang N; Guo L; Rueda BR; Tilly JL EMBO Rep; 2010 Aug; 11(8):633-9. PubMed ID: 20559324 [TBL] [Abstract][Full Text] [Related]
45. cables1 is required for embryonic neural development: molecular, cellular, and behavioral evidence from the zebrafish. Groeneweg JW; White YA; Kokel D; Peterson RT; Zukerberg LR; Berin I; Rueda BR; Wood AW Mol Reprod Dev; 2011 Jan; 78(1):22-32. PubMed ID: 21268180 [TBL] [Abstract][Full Text] [Related]
46. Cables1 Inhibits Proliferation and Induces Senescence by Angiotensin II via a p21-Dependent Pathway in Human Umbilical Vein Endothelial Cells. Pu Z; Wang Y; Liu X; Liu J; Cui J; Wang Y; Lv B; Yu B J Vasc Res; 2017; 54(1):13-21. PubMed ID: 28118639 [TBL] [Abstract][Full Text] [Related]
47. The Epigenomic Landscape of Pituitary Adenomas Reveals Specific Alterations and Differentiates Among Acromegaly, Cushing's Disease and Endocrine-Inactive Subtypes. Salomon MP; Wang X; Marzese DM; Hsu SC; Nelson N; Zhang X; Matsuba C; Takasumi Y; Ballesteros-Merino C; Fox BA; Barkhoudarian G; Kelly DF; Hoon DSB Clin Cancer Res; 2018 Sep; 24(17):4126-4136. PubMed ID: 30084836 [No Abstract] [Full Text] [Related]
48. Expression of genes related to corticotropin production and glucocorticoid feedback in corticotroph adenomas of dogs with Cushing's disease. Teshima T; Hara Y; Takekoshi S; Teramoto A; Osamura RY; Tagawa M Domest Anim Endocrinol; 2009 Jan; 36(1):3-12. PubMed ID: 18818046 [TBL] [Abstract][Full Text] [Related]
50. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing's disease. Hayashi K; Inoshita N; Kawaguchi K; Ibrahim Ardisasmita A; Suzuki H; Fukuhara N; Okada M; Nishioka H; Takeuchi Y; Komada M; Takeshita A; Yamada S Eur J Endocrinol; 2016 Feb; 174(2):213-26. PubMed ID: 26578638 [TBL] [Abstract][Full Text] [Related]
51. Very low frequency of germline GPR101 genetic variation and no biallelic defects with AIP in a large cohort of patients with sporadic pituitary adenomas. Lecoq AL; Bouligand J; Hage M; Cazabat L; Salenave S; Linglart A; Young J; Guiochon-Mantel A; Chanson P; Kamenický P Eur J Endocrinol; 2016 Apr; 174(4):523-30. PubMed ID: 26792934 [TBL] [Abstract][Full Text] [Related]
52. Infrequent mutations of p16INK4A and p15INK4B genes in human pituitary adenomas. Yoshimoto K; Tanaka C; Yamada S; Kimura T; Iwahana H; Sano T; Itakura M Eur J Endocrinol; 1997 Jan; 136(1):74-80. PubMed ID: 9037130 [TBL] [Abstract][Full Text] [Related]
53. Corticotropinoma as a Component of Carney Complex. Hernández-Ramírez LC; Tatsi C; Lodish MB; Faucz FR; Pankratz N; Chittiboina P; Lane J; Kay DM; Valdés N; Dimopoulos A; Mills JL; Stratakis CA J Endocr Soc; 2017 Jul; 1(7):918-925. PubMed ID: 29264542 [TBL] [Abstract][Full Text] [Related]
54. Decoding the genetic basis of Cushing's disease: USP8 in the spotlight. Theodoropoulou M; Reincke M; Fassnacht M; Komada M Eur J Endocrinol; 2015 Oct; 173(4):M73-83. PubMed ID: 26012588 [TBL] [Abstract][Full Text] [Related]
55. USP8 Mutations and Cell Cycle Regulation in Corticotroph Adenomas. Martins CS; Camargo RC; Coeli-Lacchini FB; Saggioro FP; Moreira AC; de Castro M Horm Metab Res; 2020 Feb; 52(2):117-123. PubMed ID: 32053843 [TBL] [Abstract][Full Text] [Related]
56. P53 gene mutation in an atypical corticotroph adenoma with Cushing's disease. Kawashima ST; Usui T; Sano T; Iogawa H; Hagiwara H; Tamanaha T; Tagami T; Naruse M; Hojo M; Takahashi JA; Shimatsu A Clin Endocrinol (Oxf); 2009 Apr; 70(4):656-7. PubMed ID: 18771563 [No Abstract] [Full Text] [Related]
57. Germline USP8 Mutation Associated With Pediatric Cushing Disease and Other Clinical Features: A New Syndrome. Cohen M; Persky R; Stegemann R; Hernández-Ramírez LC; Zeltser D; Lodish MB; Chen A; Keil MF; Tatsi C; Faucz FR; Buchner DA; Stratakis CA; Tiosano D J Clin Endocrinol Metab; 2019 Oct; 104(10):4676-4682. PubMed ID: 31162547 [TBL] [Abstract][Full Text] [Related]
58. Genetic Basis of ACTH-Secreting Adenomas. Locantore P; Paragliola RM; Cera G; Novizio R; Maggio E; Ramunno V; Corsello A; Corsello SM Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743266 [TBL] [Abstract][Full Text] [Related]
59. Comparison of MRI techniques for detecting microadenomas in Cushing's disease. Grober Y; Grober H; Wintermark M; Jane JA; Oldfield EH J Neurosurg; 2018 Apr; 128(4):1051-1057. PubMed ID: 28452619 [TBL] [Abstract][Full Text] [Related]
60. Biochemical assessment of Cushing's disease in patients with corticotroph macroadenomas. Katznelson L; Bogan JS; Trob JR; Schoenfeld DA; Hedley-Whyte ET; Hsu DW; Zervas NT; Swearingen B; Sleeper M; Klibanski A J Clin Endocrinol Metab; 1998 May; 83(5):1619-23. PubMed ID: 9589666 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]