These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28533376)

  • 41. Enzyme-Responsive Hydrogels as Potential Drug Delivery Systems-State of Knowledge and Future Prospects.
    Sobczak M
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457239
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Supramolecular hydrogels: synthesis, properties and their biomedical applications.
    Dong R; Pang Y; Su Y; Zhu X
    Biomater Sci; 2015 Jul; 3(7):937-54. PubMed ID: 26221932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism.
    Lu HD; Charati MB; Kim IL; Burdick JA
    Biomaterials; 2012 Mar; 33(7):2145-53. PubMed ID: 22177842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Salecan-Based pH-Sensitive Hydrogels for Insulin Delivery.
    Qi X; Wei W; Li J; Zuo G; Pan X; Su T; Zhang J; Dong W
    Mol Pharm; 2017 Feb; 14(2):431-440. PubMed ID: 28055215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells.
    Jung H; Park JS; Yeom J; Selvapalam N; Park KM; Oh K; Yang JA; Park KH; Hahn SK; Kim K
    Biomacromolecules; 2014 Mar; 15(3):707-14. PubMed ID: 24605794
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience.
    Grijalvo S; Mayr J; Eritja R; Díaz DD
    Biomater Sci; 2016 Apr; 4(4):555-74. PubMed ID: 26818789
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human mesenchymal stem cell culture on heparin-based hydrogels and the modulation of interactions by gel elasticity and heparin amount.
    Kim M; Kim YH; Tae G
    Acta Biomater; 2013 Aug; 9(8):7833-44. PubMed ID: 23643605
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physical hydrogels photo-cross-linked from self-assembled macromers for potential use in tissue engineering.
    Liu B; Lewis AK; Shen W
    Biomacromolecules; 2009 Dec; 10(12):3182-7. PubMed ID: 19919071
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contact-Free Remote Manipulation of Hydrogel Properties Using Light-Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications.
    Choi CE; Chakraborty A; Coyle A; Shamiya Y; Paul A
    Adv Healthc Mater; 2022 Apr; 11(8):e2102088. PubMed ID: 35032156
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New hydrogel obtained from a novel dendritic monomer as a promising candidate for biomedical applications.
    Cuggino JC; Charles G; Gatti G; Strumia MC; Alvarez Igarzabal CI
    J Biomed Mater Res A; 2013 Dec; 101(12):3372-81. PubMed ID: 23553982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stimuli-Sensitive Injectable Hydrogels Based on Polysaccharides and Their Biomedical Applications.
    Thambi T; Phan VH; Lee DS
    Macromol Rapid Commun; 2016 Dec; 37(23):1881-1896. PubMed ID: 27753168
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lessons from nature: stimuli-responsive polymers and their biomedical applications.
    Jeong B; Gutowska A
    Trends Biotechnol; 2002 Jul; 20(7):305-11. PubMed ID: 12062976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro.
    Payne C; Dolan EB; O'Sullivan J; Cryan SA; Kelly HM
    Drug Deliv Transl Res; 2017 Feb; 7(1):132-146. PubMed ID: 27924469
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-Assembly and Genetically Engineered Hydrogels.
    Yang Z; Sun F
    Adv Biochem Eng Biotechnol; 2021; 178():169-196. PubMed ID: 33851233
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein-Based Hydrogels for Tissue Engineering.
    Schloss AC; Williams DM; Regan LJ
    Adv Exp Med Biol; 2016; 940():167-177. PubMed ID: 27677513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel design of injectable porous hydrogels with in situ pore formation.
    Yom-Tov O; Neufeld L; Seliktar D; Bianco-Peled H
    Acta Biomater; 2014 Oct; 10(10):4236-46. PubMed ID: 25034645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-Assembly of Thermoreversible Hydrogels via Molecular Recognition toward a Spatially Organized Coculture System.
    Tamate R; Takahashi K; Ueki T; Akimoto AM; Yoshida R
    Biomacromolecules; 2017 Jan; 18(1):281-287. PubMed ID: 27990808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery.
    Casolaro M; Casolaro I; Lamponi S
    Eur J Pharm Biopharm; 2012 Apr; 80(3):553-61. PubMed ID: 22138000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide.
    Meenach SA; Anderson AA; Suthar M; Anderson KW; Hilt JZ
    J Biomed Mater Res A; 2009 Dec; 91(3):903-9. PubMed ID: 19090484
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics.
    Ehrick JD; Deo SK; Browning TW; Bachas LG; Madou MJ; Daunert S
    Nat Mater; 2005 Apr; 4(4):298-302. PubMed ID: 15765106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.