BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 28533982)

  • 1. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents.
    Maiangwa J; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Normi YM; Mohd Shariff F; Leow TC
    PeerJ; 2017; 5():e3341. PubMed ID: 28533982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the stability of Geobacillus zalihae T1 lipase in organic solvents and insights into the structural stability of its variants.
    Maiangwa J; Hamdan SH; Mohamad Ali MS; Salleh AB; Zaliha Raja Abd Rahman RN; Shariff FM; Leow TC
    J Mol Graph Model; 2021 Jun; 105():107897. PubMed ID: 33770705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.
    Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC
    J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding thermal and organic solvent stability of thermoalkalophilic lipases: insights from computational predictions and experiments.
    Shehata M; Timucin E; Venturini A; Sezerman OU
    J Mol Model; 2020 May; 26(6):122. PubMed ID: 32383051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of alcohol concentration and temperature on the dynamics and stability of mutant Staphylococcal lipase.
    Ong SN; Kamarudin NHA; Shariff FM; Noor NDM; Ali MSM; Rahman RNZRA
    J Biomol Struct Dyn; 2023 Nov; ():1-17. PubMed ID: 37968883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol.
    Gihaz S; Kanteev M; Pazy Y; Fishman A
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase.
    Trodler P; Schmid RD; Pleiss J
    BMC Struct Biol; 2009 May; 9():38. PubMed ID: 19476626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamic Simulation of the Porcine Pancreatic Lipase in Non-aqueous Organic Solvents.
    Chen ZS; Wu YD; Hao JH; Liu YJ; He KP; Jiang WH; Xiong MJ; Lv YS; Cao SL; Zhu J
    Front Bioeng Biotechnol; 2020; 8():676. PubMed ID: 32766212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of enzyme tolerance against organic solvents: Insights from molecular dynamics simulation.
    Mohtashami M; Fooladi J; Haddad-Mashadrizeh A; Housaindokht MR; Monhemi H
    Int J Biol Macromol; 2019 Feb; 122():914-923. PubMed ID: 30445665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of organic solvent and crystal water on γ-chymotrypsin in acetonitrile media: observations from molecular dynamics simulation and DFT calculation.
    Zhu L; Yang W; Meng YY; Xiao X; Guo Y; Pu X; Li M
    J Phys Chem B; 2012 Mar; 116(10):3292-304. PubMed ID: 22320259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lid dynamics of porcine pancreatic lipase in non-aqueous solvents.
    Haque N; Prabhu NP
    Biochim Biophys Acta; 2016 Oct; 1860(10):2326-34. PubMed ID: 27155580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of Candida rugosa lipase: the role of organic solvent.
    Tejo BA; Salleh AB; Pleiss J
    J Mol Model; 2004 Dec; 10(5-6):358-66. PubMed ID: 15597204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing the molecular basis of enzyme stability in ethanol/water mixtures using molecular dynamics simulations.
    Lousa D; Baptista AM; Soares CM
    J Chem Inf Model; 2012 Feb; 52(2):465-73. PubMed ID: 22243049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent.
    Park HJ; Joo JC; Park K; Kim YH; Yoo YJ
    J Biotechnol; 2013 Feb; 163(3):346-52. PubMed ID: 23178554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of Thermostability, Organic Solvent, and pH Stability in
    Ishak SNH; Masomian M; Kamarudin NHA; Ali MSM; Leow TC; Rahman RNZRA
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the structural properties of the active conformation BTL2 of a lipase from Geobacillus thermocatenulatus in toluene using molecular dynamic simulations and engineering BTL2 via in-silico mutation.
    Yenenler A; Venturini A; Burduroglu HC; Sezerman OU
    J Mol Model; 2018 Aug; 24(9):229. PubMed ID: 30097767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents.
    Trodler P; Pleiss J
    BMC Struct Biol; 2008 Feb; 8():9. PubMed ID: 18254946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent.
    Norin M; Haeffner F; Hult K; Edholm O
    Biophys J; 1994 Aug; 67(2):548-59. PubMed ID: 7948673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S; Saven JG
    Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.