BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

708 related articles for article (PubMed ID: 28534111)

  • 1. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum.
    Shi F; Zhang M; Li Y
    World J Microbiol Biotechnol; 2017 Jun; 33(6):122. PubMed ID: 28534111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum.
    Wang N; Ni Y; Shi F
    Biotechnol Lett; 2015 Jul; 37(7):1473-81. PubMed ID: 25801673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis.
    Shi F; Jiang J; Li Y; Li Y; Xie Y
    J Ind Microbiol Biotechnol; 2013 Nov; 40(11):1285-96. PubMed ID: 23928903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific γ-aminobutyric acid decomposition by gabP and gabT under neutral pH in recombinant Corynebacterium glutamicum.
    Ni Y; Shi F; Wang N
    Biotechnol Lett; 2015 Nov; 37(11):2219-27. PubMed ID: 26140901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032.
    Shi F; Li Y
    Biotechnol Lett; 2011 Dec; 33(12):2469-74. PubMed ID: 21826397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range.
    Choi JW; Yim SS; Lee SH; Kang TJ; Park SJ; Jeong KJ
    Microb Cell Fact; 2015 Feb; 14():21. PubMed ID: 25886194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli.
    Takahashi C; Shirakawa J; Tsuchidate T; Okai N; Hatada K; Nakayama H; Tateno T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 Aug; 51(3):171-6. PubMed ID: 22759537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosomal editing of Corynebacterium glutamicum ATCC 13032 to produce gamma-aminobutyric acid.
    Yao C; Shi F; Wang X
    Biotechnol Appl Biochem; 2023 Feb; 70(1):7-21. PubMed ID: 35106837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH.
    Shi F; Xie Y; Jiang J; Wang N; Li Y; Wang X
    Enzyme Microb Technol; 2014; 61-62():35-43. PubMed ID: 24910334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose.
    Jorge JM; Leggewie C; Wendisch VF
    Amino Acids; 2016 Nov; 48(11):2519-2531. PubMed ID: 27289384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved fermentative γ-aminobutyric acid production by secretory expression of glutamate decarboxylase by Corynebacterium glutamicum.
    Wen J; Bao J
    J Biotechnol; 2021 Apr; 331():19-25. PubMed ID: 33711360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum.
    Xu JZ; Wu ZH; Gao SJ; Zhang W
    Microb Cell Fact; 2018 Jul; 17(1):105. PubMed ID: 29981572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum.
    Shi F; Luan M; Li Y
    AMB Express; 2018 Apr; 8(1):61. PubMed ID: 29671147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution.
    Baritugo KA; Kim HT; David Y; Khang TU; Hyun SM; Kang KH; Yu JH; Choi JH; Song JJ; Joo JC; Park SJ
    Microb Cell Fact; 2018 Aug; 17(1):129. PubMed ID: 30131070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the supply of oxaloacetate for L-glutamate production by pyc overexpression in different Corynebacterium glutamicum.
    Guo X; Wang J; Xie X; Xu Q; Zhang C; Chen N
    Biotechnol Lett; 2013 Jun; 35(6):943-50. PubMed ID: 23690048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions.
    Park SH; Sohn YJ; Park SJ; Choi JI
    Microb Cell Fact; 2020 Mar; 19(1):64. PubMed ID: 32156293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial production of L -glutamate and L -glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb.
    Liu Q; Zhang J; Wei XX; Ouyang SP; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1297-304. PubMed ID: 18040683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor l-isoleucine in recombinant Corynebacterium glutamicum ssp. lactofermentum.
    Shi F; Fang H; Niu T; Lu Z
    Enzyme Microb Technol; 2016 Jun; 87-88():79-85. PubMed ID: 27178798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.