These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28534404)

  • 21. Smooth gap tuning strategy for cove-type graphene nanoribbons.
    de Sousa Araújo Cassiano T; Monteiro FF; Evaristo de Sousa L; Magela E Silva G; de Oliveira Neto PH
    RSC Adv; 2020 Jul; 10(45):26937-26943. PubMed ID: 35515758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Helical edge states and edge-state transport in strained armchair graphene nanoribbons.
    Liu ZF; Wu QP; Chen AX; Xiao XB; Liu NH; Miao GX
    Sci Rep; 2017 Aug; 7(1):8854. PubMed ID: 28821764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains.
    Cao T; Zhao F; Louie SG
    Phys Rev Lett; 2017 Aug; 119(7):076401. PubMed ID: 28949674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope.
    Liao Z; Medrano Sandonas L; Zhang T; Gall M; Dianat A; Gutierrez R; Mühle U; Gluch J; Jordan R; Cuniberti G; Zschech E
    Sci Rep; 2017 Mar; 7(1):211. PubMed ID: 28303001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics.
    Kou L; Hu F; Yan B; Frauenheim T; Chen C
    Nanoscale; 2014 Jul; 6(13):7474-9. PubMed ID: 24881864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state.
    Young AF; Sanchez-Yamagishi JD; Hunt B; Choi SH; Watanabe K; Taniguchi T; Ashoori RC; Jarillo-Herrero P
    Nature; 2014 Jan; 505(7484):528-32. PubMed ID: 24362569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topological Phases in Graphene Nanoribbons Tuned by Electric Fields.
    Zhao F; Cao T; Louie SG
    Phys Rev Lett; 2021 Oct; 127(16):166401. PubMed ID: 34723587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metallization-Induced Quantum Limits of Contact Resistance in Graphene Nanoribbons with One-Dimensional Contacts.
    Poljak M; Matić M
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic edge states and coherent manipulation of graphene nanoribbons.
    Slota M; Keerthi A; Myers WK; Tretyakov E; Baumgarten M; Ardavan A; Sadeghi H; Lambert CJ; Narita A; Müllen K; Bogani L
    Nature; 2018 May; 557(7707):691-695. PubMed ID: 29849157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spin-Orbit Coupling Induced Gap in Graphene on Pt(111) with Intercalated Pb Monolayer.
    Klimovskikh II; Otrokov MM; Voroshnin VY; Sostina D; Petaccia L; Di Santo G; Thakur S; Chulkov EV; Shikin AM
    ACS Nano; 2017 Jan; 11(1):368-374. PubMed ID: 28005333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary.
    Sun Q; Gröning O; Overbeck J; Braun O; Perrin ML; Borin Barin G; El Abbassi M; Eimre K; Ditler E; Daniels C; Meunier V; Pignedoli CA; Calame M; Fasel R; Ruffieux P
    Adv Mater; 2020 Mar; 32(12):e1906054. PubMed ID: 32048409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-narrow metallic armchair graphene nanoribbons.
    Kimouche A; Ervasti MM; Drost R; Halonen S; Harju A; Joensuu PM; Sainio J; Liljeroth P
    Nat Commun; 2015 Dec; 6():10177. PubMed ID: 26658960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation.
    Martin-Martinez FJ; Fias S; Van Lier G; De Proft F; Geerlings P
    Phys Chem Chem Phys; 2013 Aug; 15(30):12637-47. PubMed ID: 23787877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure.
    Li Y; Ngo AT; DiLullo A; Latt KZ; Kersell H; Fisher B; Zapol P; Ulloa SE; Hla SW
    Nat Commun; 2017 Oct; 8(1):946. PubMed ID: 29038513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of edge geometry and magnetic interaction in opening bandgap of low-dimensional graphene.
    Zhu Y; Lian J; Jiang Q
    Chemphyschem; 2014 Apr; 15(5):958-65. PubMed ID: 24616008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bond length pattern associated with charge carriers in armchair graphene nanoribbons.
    Teixeira JF; de Oliveira Neto PH; da Cunha WF; Ribeiro LA; E Silva GM
    J Mol Model; 2017 Sep; 23(10):293. PubMed ID: 28951991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube.
    Kou L; Tang C; Frauenheim T; Chen C
    J Phys Chem Lett; 2013 Apr; 4(8):1328-33. PubMed ID: 26282148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.