BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28534477)

  • 1. Decoding and reprogramming fungal iterative nonribosomal peptide synthetases.
    Yu D; Xu F; Zhang S; Zhan J
    Nat Commun; 2017 May; 8():15349. PubMed ID: 28534477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing Exchange Units for Combining Iterative and Linear Fungal Nonribosomal Peptide Synthetases.
    Steiniger C; Hoffmann S; Süssmuth RD
    Cell Chem Biol; 2019 Nov; 26(11):1526-1534.e2. PubMed ID: 31471217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Stress-Responsive and Host-Oriented Role of Nonribosomal Peptide Synthetases in an Entomopathogenic Fungus,
    Liu H; Xie L; Wang J; Guo Q; Yang S; Liang P; Wang C; Lin M; Xu Y; Zhang L
    J Microbiol Biotechnol; 2017 Mar; 27(3):439-449. PubMed ID: 27840396
    [No Abstract]   [Full Text] [Related]  

  • 4. [Advances in the study of the mechanism and application of nonribosomal peptide synthetases].
    Wang SY
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):734-7. PubMed ID: 17944384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial-Like Nonribosomal Peptide Synthetases Produce Cyclopeptides in the Zygomycetous Fungus Mortierella alpina.
    Wurlitzer JM; Stanišić A; Wasmuth I; Jungmann S; Fischer D; Kries H; Gressler M
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33158886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations.
    Alonzo DA; Schmeing TM
    Protein Sci; 2020 Dec; 29(12):2316-2347. PubMed ID: 33073901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana.
    Xu Y; Orozco R; Kithsiri Wijeratne EM; Espinosa-Artiles P; Leslie Gunatilaka AA; Patricia Stock S; Molnár I
    Fungal Genet Biol; 2009 May; 46(5):353-64. PubMed ID: 19285149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desymmetrization of Cyclodepsipeptides by Assembly Mode Switching of Iterative Nonribosomal Peptide Synthetases.
    Steiniger C; Hoffmann S; Süssmuth RD
    ACS Synth Biol; 2019 Apr; 8(4):661-667. PubMed ID: 30862156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases.
    Kohli RM; Trauger JW; Schwarzer D; Marahiel MA; Walsh CT
    Biochemistry; 2001 Jun; 40(24):7099-108. PubMed ID: 11401555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered production of fungal anticancer cyclooligomer depsipeptides in Saccharomyces cerevisiae.
    Yu D; Xu F; Zi J; Wang S; Gage D; Zeng J; Zhan J
    Metab Eng; 2013 Jul; 18():60-8. PubMed ID: 23608474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ways of assembling complex natural products on modular nonribosomal peptide synthetases.
    Mootz HD; Schwarzer D; Marahiel MA
    Chembiochem; 2002 Jun; 3(6):490-504. PubMed ID: 12325005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the biosynthesis of fungal nonribosomal peptides.
    Zhang L; Wang C; Chen K; Zhong W; Xu Y; Molnár I
    Nat Prod Rep; 2023 Jan; 40(1):62-88. PubMed ID: 35796260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonribosomal peptide synthetases: structures and dynamics.
    Strieker M; Tanović A; Marahiel MA
    Curr Opin Struct Biol; 2010 Apr; 20(2):234-40. PubMed ID: 20153164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis.
    Bushley KE; Ripoll DR; Turgeon BG
    BMC Evol Biol; 2008 Dec; 8():328. PubMed ID: 19055762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insight into the necessary conformational changes of modular nonribosomal peptide synthetases.
    Gulick AM
    Curr Opin Chem Biol; 2016 Dec; 35():89-96. PubMed ID: 27676239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of Fungal Nonribosomal Peptide Synthetases in Yeast and In Vitro.
    Cacho RA; Tang Y
    Methods Mol Biol; 2016; 1401():103-19. PubMed ID: 26831704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases.
    Ehmann DE; Trauger JW; Stachelhaus T; Walsh CT
    Chem Biol; 2000 Oct; 7(10):765-72. PubMed ID: 11033080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases.
    Schwarzer D; Mootz HD; Linne U; Marahiel MA
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14083-8. PubMed ID: 12384573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro chemoenzymatic and in vivo biocatalytic syntheses of new beauvericin analogues.
    Matthes D; Richter L; Müller J; Denisiuk A; Feifel SC; Xu Y; Espinosa-Artiles P; Süssmuth RD; Molnár I
    Chem Commun (Camb); 2012 Jun; 48(45):5674-6. PubMed ID: 22547105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics.
    Bills G; Li Y; Chen L; Yue Q; Niu XM; An Z
    Nat Prod Rep; 2014 Oct; 31(10):1348-75. PubMed ID: 25156669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.