These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 28534563)
1. Enhanced catalytic performance of a PdO catalyst prepared via a two-step method of in situ reduction-oxidation. Hu W; Li GX; Chen JJ; Huang FJ; Wu Y; Yuan SD; Zhong L; Chen YQ Chem Commun (Camb); 2017 Jun; 53(45):6160-6163. PubMed ID: 28534563 [TBL] [Abstract][Full Text] [Related]
2. Sonochemical synthesis of PdO@silica as a nanocatalyst for selective aerobic alcohol oxidation. Seok S; Hussain MA; Park KJ; Kim JW; Kim DH Ultrason Sonochem; 2016 Jan; 28():178-184. PubMed ID: 26384897 [TBL] [Abstract][Full Text] [Related]
3. Catalytic ozonation of oxalate with a cerium supported palladium oxide: an efficient degradation not relying on hydroxyl radical oxidation. Zhang T; Li W; Croué JP Environ Sci Technol; 2011 Nov; 45(21):9339-46. PubMed ID: 21970593 [TBL] [Abstract][Full Text] [Related]
4. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
5. Catalytic activity of Fe/ZrO₂ nanoparticles for dimethyl sulfide oxidation. Soni KC; Chandra Shekar S; Singh B; Gopi T J Colloid Interface Sci; 2015 May; 446():226-36. PubMed ID: 25678157 [TBL] [Abstract][Full Text] [Related]
6. Size control and catalytic activity of highly dispersed Pd nanoparticles supported on porous glass beads. Shen C; Wang YJ; Xu JH; Wang K; Luo GS Langmuir; 2012 May; 28(19):7519-27. PubMed ID: 22482775 [TBL] [Abstract][Full Text] [Related]
7. In situ Raman and in situ XRD analysis of PdO reduction and Pd° oxidation supported on γ-Al2O3 catalyst under different atmospheres. Baylet A; Marécot P; Duprez D; Castellazzi P; Groppi G; Forzatti P Phys Chem Chem Phys; 2011 Mar; 13(10):4607-13. PubMed ID: 21279224 [TBL] [Abstract][Full Text] [Related]
8. Controlled one-step synthesis of Pt decorated octahedral Fe₃O₄ and its excellent catalytic performance for CO oxidation. Li G; Li L; Wu B; Li J; Yuan Y; Shi J Nanoscale; 2015 Nov; 7(42):17855-60. PubMed ID: 26459966 [TBL] [Abstract][Full Text] [Related]
9. Behavior of Supported Palladium Oxide Nanoparticles under Reaction Conditions, Studied with near Ambient Pressure XPS. Jürgensen A; Heutz N; Raschke H; Merz K; Hergenröder R Anal Chem; 2015 Aug; 87(15):7848-56. PubMed ID: 26144222 [TBL] [Abstract][Full Text] [Related]
10. Trapping of Mobile Pt Species by PdO Nanoparticles under Oxidizing Conditions. Carrillo C; Johns TR; Xiong H; DeLaRiva A; Challa SR; Goeke RS; Artyushkova K; Li W; Kim CH; Datye AK J Phys Chem Lett; 2014 Jun; 5(12):2089-93. PubMed ID: 26270497 [TBL] [Abstract][Full Text] [Related]
11. Comparative study on the catalytic electrooxidative abilities of RuO(x)-PdO-TiO(2)/Ti and RuO(x)-PdO/Ti anode. Du L; Wang Y; Dai S; Pei J; Qin S; Hu C J Hazard Mater; 2011 Jan; 185(2-3):1596-9. PubMed ID: 21074320 [TBL] [Abstract][Full Text] [Related]
12. Chemical state study of palladium powder and ceria-supported palladium during low-temperature CO oxidation. Oh SH; Hoflund GB J Phys Chem A; 2006 Jun; 110(24):7609-13. PubMed ID: 16774204 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of PdO nanoparticles on trivalent metal (B, Al and Ga) substituted MCM-41: excellent catalytic activity in supercritical carbon dioxide. Chatterjee M; Ishizaka T; Kawanami H J Colloid Interface Sci; 2014 Apr; 420():15-26. PubMed ID: 24559695 [TBL] [Abstract][Full Text] [Related]
14. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts. Wang F; Zhang H; He D Environ Technol; 2014; 35(1-4):347-54. PubMed ID: 24600874 [TBL] [Abstract][Full Text] [Related]
15. Enhanced removal of sodium salts supported by in-situ catalyst synthesis in a supercritical water oxidation process. Takahashi F; Sun ZR; Fukushi K; Oshima Y; Yamamoto K Water Sci Technol; 2012; 65(11):2034-41. PubMed ID: 22592475 [TBL] [Abstract][Full Text] [Related]
16. Mn-Promoted Co3O4/TiO2 as an efficient catalyst for catalytic oxidation of dibromomethane (CH2Br2). Mei J; Zhao S; Huang W; Qu Z; Yan N J Hazard Mater; 2016 Nov; 318():1-8. PubMed ID: 27388418 [TBL] [Abstract][Full Text] [Related]
17. Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants. Du Y; Ma W; Liu P; Zou B; Ma J J Hazard Mater; 2016 May; 308():58-66. PubMed ID: 26808243 [TBL] [Abstract][Full Text] [Related]
18. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance. Parvas M; Haghighi M; Allahyari S Environ Technol; 2014; 35(9-12):1140-9. PubMed ID: 24701909 [TBL] [Abstract][Full Text] [Related]
19. Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids. Li S; Guo S; Yang H; Gou G; Ren R; Li J; Dong Z; Jin J; Ma J J Hazard Mater; 2014 Apr; 270():11-7. PubMed ID: 24531368 [TBL] [Abstract][Full Text] [Related]
20. Production of novel palladium nanocatalyst stabilized with sustainable chitosan/cellulose composite and its catalytic performance in Suzuki-Miyaura coupling reactions. Yılmaz Baran N; Baran T; Menteş A Carbohydr Polym; 2018 Feb; 181():596-604. PubMed ID: 29254012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]