These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28534592)

  • 1. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives.
    Dupont MF; MacFarlane DR; Pringle JM
    Chem Commun (Camb); 2017 Jun; 53(47):6288-6302. PubMed ID: 28534592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.
    Hu R; Cola BA; Haram N; Barisci JN; Lee S; Stoughton S; Wallace G; Too C; Thomas M; Gestos A; Cruz ME; Ferraris JP; Zakhidov AA; Baughman RH
    Nano Lett; 2010 Mar; 10(3):838-46. PubMed ID: 20170193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple.
    Taheri A; MacFarlane DR; Pozo-Gonzalo C; Pringle JM
    ChemSusChem; 2018 Aug; 11(16):2788-2796. PubMed ID: 29873193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Efficiency Cryo-Thermocells Assembled with Anisotropic Holey Graphene Aerogel Electrodes and a Eutectic Redox Electrolyte.
    Li G; Dong D; Hong G; Yan L; Zhang X; Song W
    Adv Mater; 2019 Jun; 31(25):e1901403. PubMed ID: 31034133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurement of the genuine efficiency of thermogalvanic heat-to-electricity conversion in thermocells.
    Trosheva MA; Buckingham MA; Aldous L
    Chem Sci; 2022 May; 13(17):4984-4998. PubMed ID: 35655863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat.
    Yang P; Liu K; Chen Q; Mo X; Zhou Y; Li S; Feng G; Zhou J
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):12050-3. PubMed ID: 27557890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass-Derived Sustainable Electrode Material for Low-Grade Heat Harvesting.
    Park J; Kim T
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-Circuit Current in Polymeric Membrane-Based Thermocells: An Experimental Study.
    Barragán VM
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34203522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Power Density Electrochemical Thermocells for Inexpensively Harvesting Low-Grade Thermal Energy.
    Zhang L; Kim T; Li N; Kang TJ; Chen J; Pringle JM; Zhang M; Kazim AH; Fang S; Haines C; Al-Masri D; Cola BA; Razal JM; Di J; Beirne S; MacFarlane DR; Gonzalez-Martin A; Mathew S; Kim YH; Wallace G; Baughman RH
    Adv Mater; 2017 Mar; 29(12):. PubMed ID: 28121372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy.
    Kim JH; Lee JH; Palem RR; Suh MS; Lee HH; Kang TJ
    Sci Rep; 2019 Jun; 9(1):8706. PubMed ID: 31213633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion and Current Generation in Porous Electrodes for Thermo-electrochemical Cells.
    Kim JH; Kang TJ
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28894-28899. PubMed ID: 31329409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes.
    Im H; Kim T; Song H; Choi J; Park JS; Ovalle-Robles R; Yang HD; Kihm KD; Baughman RH; Lee HH; Kang TJ; Kim YH
    Nat Commun; 2016 Feb; 7():10600. PubMed ID: 26837457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Electricity-Generating Window Made of a Transparent Energy Harvester of Thermocells.
    Lee JH; Shin G; Baek JY; Kang TJ
    ACS Appl Mater Interfaces; 2021 May; 13(18):21157-21165. PubMed ID: 33793183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells.
    Laws K; Buckingham MA; Aldous L
    Chem Sci; 2024 May; 15(18):6958-6964. PubMed ID: 38725507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of Thermocells Driven by the Volume Phase Transition of Hydrogel Nanoparticles.
    Guo B; Miura Y; Hoshino Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32184-32192. PubMed ID: 34197066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Anisotropic Network and Hierarchical Electrodes Endow Cost-Effective N-Type Quasi-Solid State Thermocell with Boosted Electricity Production.
    Meng H; Gao W; Chen Y
    Small; 2024 Jul; 20(28):e2310777. PubMed ID: 38299481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Optimization Strategies for Flexible Quasi-Solid-State Thermo-Electrochemical Cells.
    Huo B; Kuang F; Guo CY
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial cellulose-based dual chemical reaction coupled hydrogel thermocells for efficient heat harvesting.
    Zong Y; Lou J; Li H; Li X; Jiang Y; Ding Q; Liu Z; Han W
    Carbohydr Polym; 2022 Oct; 294():119789. PubMed ID: 35868797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance.
    Liu L; Zhang D; Bai P; Mao Y; Li Q; Guo J; Fang Y; Ma R
    Adv Mater; 2023 Aug; 35(32):e2300696. PubMed ID: 37222174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data on the current-voltage dependents of nickel hollow microspheres based thermo-electrochemical in alkaline electrolyte.
    Burmistrov I; Gorshkov N; Kiselev N; Artyukhov D; Kolesnikov E; Khaidarov B; Yudni A; Karunakaran G; Cho EB; Kuznetsov D; Gorokhovsky A
    Data Brief; 2020 Aug; 31():105770. PubMed ID: 32548220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.